Лекция 10

Изомеризация легких парафиновых углеводородов.

Термогидрокаталитические процессы. Гидроочистка нефтяного сырья.

Содержание лекции

- 1. Назначение, термодинамика и химизм процесса изомеризации.
- 2. Основные факторы процесса изомеризации. Сырье и катализаторы.
- 3. Классификация промышленных установок изомеризации.
- 4. Основные показатели среднетемпературной изомеризации.
- 5. Низкотемпературная изомеризация. Схема процесса. Основные показатели. Материальный баланс.
- 6. Термогидрокаталитические процессы. Классификация.
- 7. Гидроочистка нефтяных фракций. Химизм процесса. Катализаторы гидроочистки нефтяного сырья. Основные факторы процесса.
- 8. Классификация промышленных установок гидроочистки нефтяного сырья.
- 9. Гидроочистка дизельных фракций. Схема установки. Основные показатели. Материальный баланс.
- 10. Гидроочистка вакуумного газойля. Схема процесса. Основные показатели. Материальный баланс.
- 11. Гидроочистка масляных рафинатов.
- 12. Гидроочистка нефтяных остатков. Схема процесса.
- 13. Гидрирование дистиллятов вторичного происхождения.

1.Назначение процесса

Повышение октанового числа легких бензиновых фракций

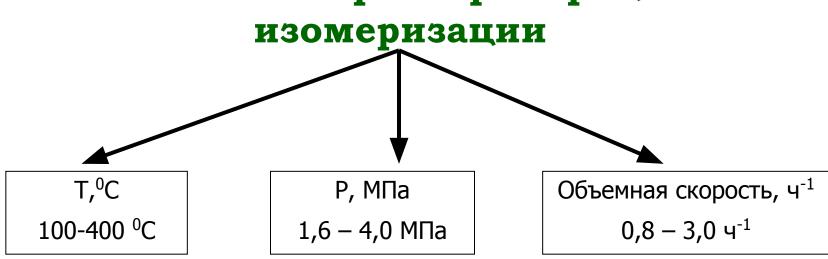
Получение изобутана, как сырье процесса алкилирования, синтеза МТБЭ и бутилкаучука

Получение изопентана для синтеза изопренового каучука

Термодинамика и химизм процесса

Экзотермическая реакция (+6-8 кДж/моль)

Основные реакции изомеризации легких парафинов (С5 – С6)

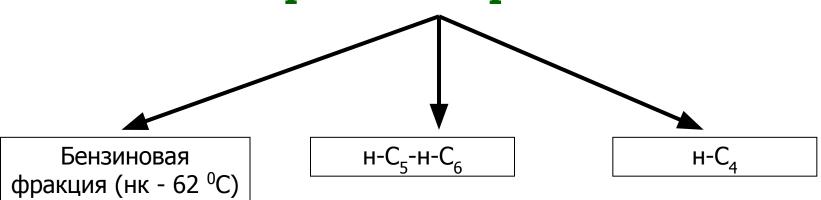

1) превращение углеводородов нормального строения в разветвленные

2) перемещение метильного радикала вдоль углеродной цепи

$$n-C_6H_{14}$$
 \longrightarrow H_3C \longrightarrow H_2 \longrightarrow H_3C \longrightarrow \longrightarrow H_3C \longrightarrow

3) изменение числа метильных радикалов в боковых цепях разветвленных углеводородов

2. Основные факторы процесса



С увеличением температуры скорость изомеризации проходит через максимум

Повышение давления снижает степень превращения, но увеличивает селективность изомеризации

Увеличения объемной скорости требует повышения температуры

Сырье изомеризации

Катализаторы изомеризации -

бифункциональные, то есть обладающие двумя основными функциями

гидрирующая дегидрирующая

платина или палладий, платина и цирконий

кислотная

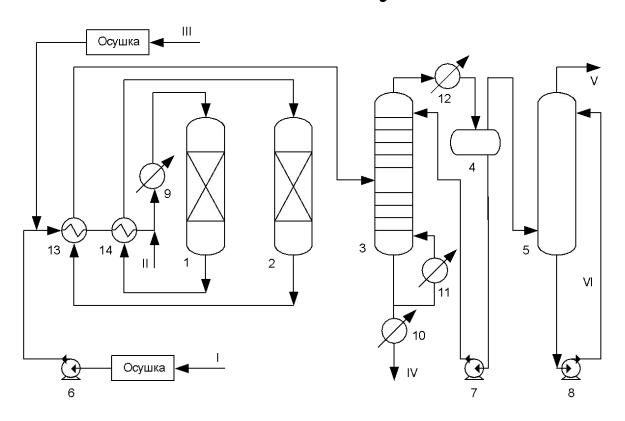
Оксид алюминия, алюмосиликаты, цеолиты. Для усиления кислотной фракции вводят соединения хлора, сульфаты

3. Классификация промышленных установок изомеризации

Установки высокотемпературной изомеризации

T-360-440°C P= 3,5-3,9 МПа объемная 0,6-2,0 ч_. -1 скорость катализатор – Pt на Al₂O₃ Установки среднетемпературной изомеризации

T-230-380°C P= 1,6-3,0 МПа катализатор – Pt на цеолите Установки низкотемпературной изомеризации


T-120-200°C P= 2,1-4,0 МПа катализатор : Pt на хлорированном Al_2O_3 или Pt и цирконий на сульфатном Al_2O_3

4. Основные показатели среднетемпературной изомеризации.

Показатели		2 30	C 187	
Название процесса	Zeolit Process	Axens	CKS Isom	Изомалк-1
Название компании	UOР (США)	Axens (Франция)	Sud Chemie (Германия)	НПП «Нефтехим» (Россия)
Название катализатора	HS-10	IP-632	Hysopar	СИ-1
Температура, °С	260 – 280	250 – 270	240 – 280	250 - 270
Давление, МПа	1,5 – 3,0	1,5 - 3,0	3,0-3,2	2,5
Объемная скорость, ч ⁻¹	2	1 – 2	2	2
Катализатор	Рt на цеолите			
Мольное соотношение H ₂ : CH ₄	4:1	4:1	1,6:1	4:1
Выход изомеризата, % (об.)	98	97	98	98
Октановое число (и.м.) за проход	78 – 80	80	78 – 80	80

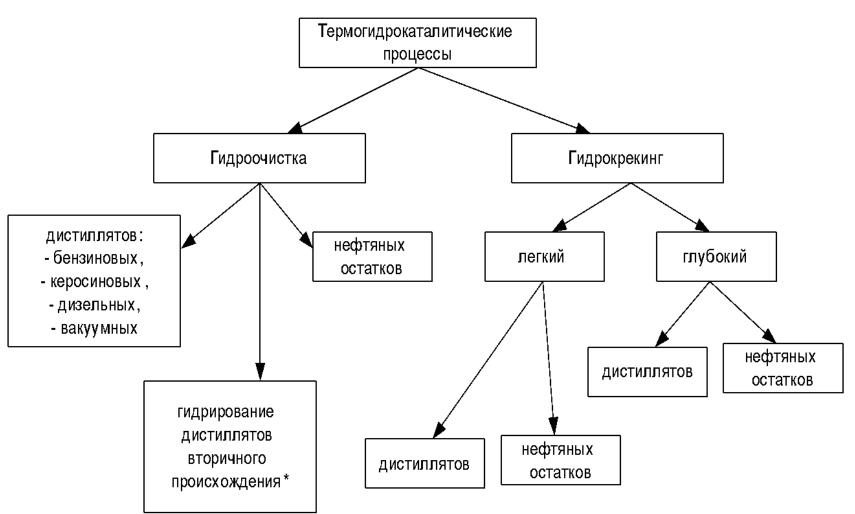
5. Низкотемпературная изомеризация.

Схема установки

- 1, 2 реакторы; 3 колонна стабилизации; 4 сепаратор;
- 5 скруббер отходящих газов; 6, 7, 8 насосы; 9, 10, 12 холодильники;
- 11 кипятильник; 13, 14 теплообменники;
- I Сырье; II Ввод хлоридов; III Свежий водород; IV Изомеризат;

– Отходящие газы; VI – Щелочь

V


Показатели процесса низкотемпературной изомеризации легких парафинов с ОИЧ = 70-73

Показатели		S8 3	le e	X
Название процесса	Penex	Axens	Par-Isom	Изомалк-2
Название компании	UOP (США)	Axens	UOP	НПП «Нефтехим»
8	UOF (CIIIA)		(США)	(Россия)
Название катализатора	I-82, I-84	IS614A	PI-242	СИ-2
Температура, °С	120 – 180	120 - 180	140 – 190	120 – 180
Давление, МПа	3,0-4,0	2,0	3,2	2,5 – 2,8
Объемная скорость, ч ⁻¹	1,5	2,0	2,5	2,5 – 3,5
Катализатор	Рt на хлорированном Al ₂ O ₃		Pt + ZrO_2 на сульфатном $\mathrm{Al}_2\mathrm{O}_3$	
Мольное соотношение H ₂ : CH ₄	0,5 : 1	0,5 : 1	2:1	2:1
Выход изомеризата, % (об.)	98	97	97	98
Октановое число (и.м.) за проход	83 – 86	84 – 85	81 – 83	82 – 84

Технологический режим блока изомеризации и материальный баланс

Toyug to will govern be added to				
Технологический режим				
Температура, °С:				
реакции в начале цикла			 3	80
в конце цикла			 4	50
верха колонны 11			 	82
низа колонны 11				
Давление, МПа:				
в реакторе 8			 3	3.5
в колонне 11				
			,	
Материальный баланс [% (мас.)]				
Поступило				
Фракция н.к62 °C			 100	0.0
Водородсодержащий газ				
В том числе водород				
Bcero				
Получено			 100	,0
Углеводородный газ				16
Сжиженный газ				
Изомеризат (компонент автомобильного б				
В том числе:	снзиг	(a)	 	2,4
изопентановая фракция			5	2 1
изогексановая фракция				
гексановая фракция				
Bcero			 100	0,8

6. Классификация термогидрокаталитических процессов

7. Гидроочистка нефтяных фракций

Назначение процесса – очищение водородом нефтяных фракций от сернистых, олефиновых, азотистых и кислородсодержащих соединений.

Деструкция сырья составляет менее 10% мас.

Химизм процесса:

$$RSH + H_2 \longrightarrow RH + H_2S$$

$$R - S - R^1 + H_2 \longrightarrow RSH + R^1H \longrightarrow RH + R^1H + H_2S$$

$$R - S - S - R^1 + H2 \longrightarrow RSH + R^1SH + H_2 \longrightarrow RH + R^1H + 2H_2S$$

Химизм процесса

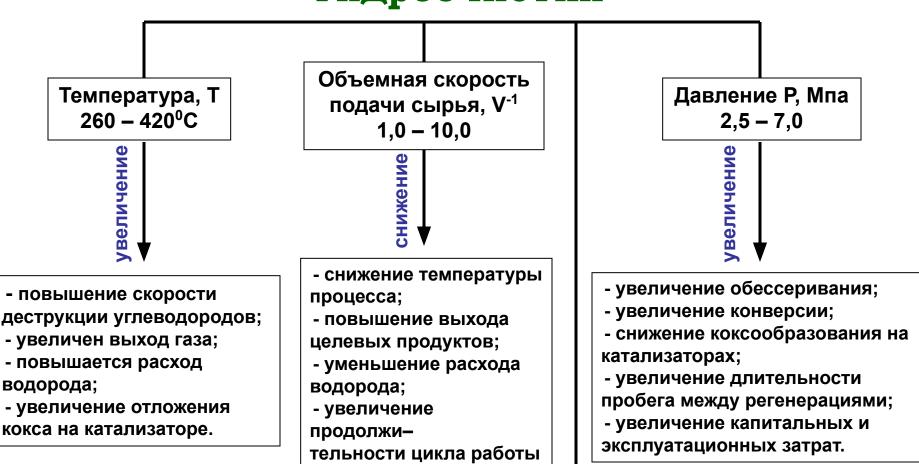
$$+ H_{2} \longrightarrow + H_{2} \longrightarrow C_{4}H_{10} + H_{2}S$$

$$+ H_{2} \longrightarrow + H_{2} \longrightarrow + H_{2}S$$

$$+ H_{2} \longrightarrow + H_{2}$$

Катализаторы гидроочистки нефтяного сырья

Гидрирующая функция. Сульфиды и оксиды (Мо; Ni; Co)

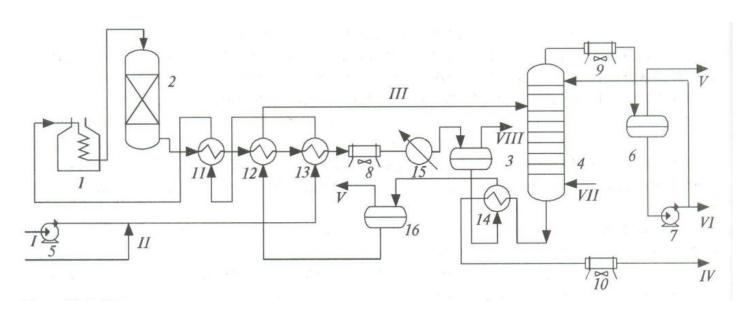

частично: Cr; W; Fe

Кислотная функция. (крекинг и изомеризация)

 Al_2O_3 , цеолиты, алюмосиликаты

Связующая функция. Al₂O₃, алюмосиликаты; оксиды кремния, титана, циркония; цирконий и магний силикаты

Основные факторы процесса гидроочистки


- повышение глубины обессеривания для сернистых дистиллятов и степени превращения сырья

катализатора.

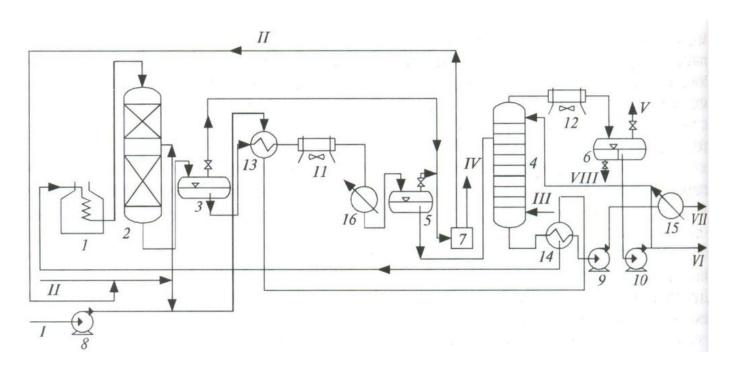
Расход водорода, % мас. на сырье 1,0 – 5,0

увеличение

9. Гидроочистка дизельных фракций. Схема установки гидроочистки дизельных фракций.

- 1 печь; 2 реактор; 3, 6, 16 сепараторы; 4 стабилизационная колонна;
- 5, 7 насосы; 8, 9, 10 аппараты воздушного охлаждения;
- 11 14 теплообменники; 15 холодильник;
- I Сырье; II Водородсодержащий газ;
- III Гидрогенизат; IV –Гидроочищенная дизельная фракция; V Газ;
- VI Бензин; VII пар; VIII Водородсодержащий газ на очистку

Основные показатели процесса гидроочистки дизельных фракций.


Температура на входе в реактор, ⁰ С в начале работы	350
в конце работы (до регенерации катализатора)	420
Парциальное давление водорода, МПа	3,0 – 4,0
Объемная скорость подачи сырья, ч ⁻¹	3,5 – 4,0
Содержание водорода в газе, % об.	80

Материальный баланс гидроочистки дизельных фракций.

Взято, % мас.:	
сырье	100,0
100% водород	0,4
всего	100,4
Получено, % мас.:	
бензиновый отгон	1,3
углеводородный газ	0,6
сероводород	1,2
гидроочищенное дизельное топливо	96,9
потери	0,4
Bcero:	100,4

10. Гидрочистка вакуумного газойля.

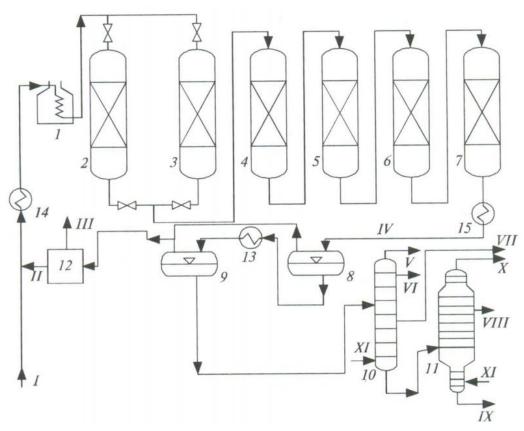
Схема гидроочистки вакуумного газойля.

1 — печь; 2 — реактор; 3 — сепаратор высокого давления; 4 — колонна стабилизации; 5 — сепаратор низкого давления; 6 — сепаратор разделения бензина от газа; 7 — секция очистки газа; 8, 9, 10 — насосы; 11, 12 — аппараты воздушного охлаждения; 13, 14 — теплообменники; 15, 16 — холодильники;

I – Сырье; II - Водородсодержащий газ; III - Циркулирующий очищенный водородсодержащий газ; IV – Сероводород; V – Газ стабилизации; VI – Бензин; VII – Очищенный вакуумный газойль

Основные показатели процесса гидроочистки вакуумного газойля

Температура на входе в реактор, ⁰ С	
в начале цикла	370
в конце цикла	410
Парциальное давление водорода в реакторе, МПа	4,0
Объемная скорость подачи сырья, ч ⁻¹	1,2
Кратность циркуляции 100% водорода м³/м³ сырья	500
Содержание водорода в циркулирующем газе, % об.	75


Материальный баланс гидроочистки вакуумного газойля

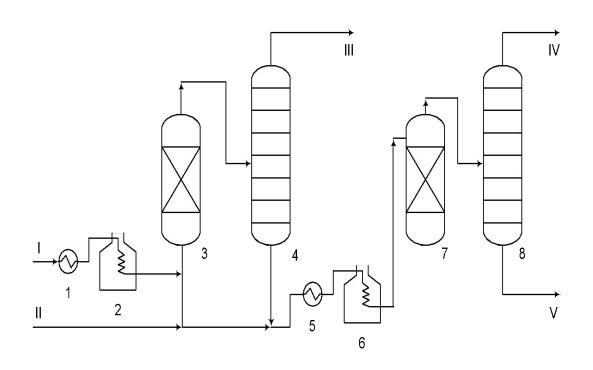
Взято, % мас.:	
сырье	100,0
100% водород	0,65
Всего:	100,65
Получено, % мас.:	
дизельная фракция	9,2
ОТГОН	1,3
углеводородный газ	1,5
сероводород	1,5
гидроочищенное топливо	86,75
потери	0,4
Всего:	100,65

11. Гидроочистка масляных дистиллятов

Температура в реакторе, ⁰ С	280 – 325
Давление в реакторе, МПа	3,5 – 4,0
Объемная скорость подачи сырья, ч ⁻¹	1,5 – 3,0
Кратность циркуляции водородсодержащего газа, м³/м³ сырья	250 – 300
Содержание водорода в водородсодержащем газе, % об.	75 – 85
Выход базовых масел, % мас.	97,0

12. Гидроочистка нефтяных остатков. Схема установки гидроочистки нефтяных остатков.

- 1 печь; 2, 3, 6, 7 реакторы гидроочистки; 4, 5 реакторы деметаллизации; 8 горячий сепаратор ВСГ;
- 9 холодный сепаратор ВСГ; 10 атмосферная колонна; 11 вакуумная колонна;
- 12 секция аминной очистки; 13 15 теплообменники;
- I Сырье; II Водородсодержащий газ; III Сероводород; IV Продукты гидроочистки; V Газ;
- Бензин; VII Дизельная фракция; VIII Газойль; IX Остаток; X Пары с верха вакуумной колонны; XI- Пар


VΙ

Материальный баланс гидроочистки деасфальтированного остатка (ДАО) гудрона смеси западносибирских нефтей.

Показатели	
Поступило:	
ДАО	100,0
водород	1,0
Итого:	101,0
Получено:	
газ С ₁ – С ₃	1,2
газ C ₄	0,5
аммиак	0,1
сероводород	1,8
фр. С ₅ – 200 ⁰ С	2,8
фр. > 200°С	94,6
Итого:	101,0

13. Гидрирование дистиллятов вторичного происхождения Бензиновых фракций Керосиновых и дизельных фракций Вакуумных дистиллятов фракций

Технологическая схема процесса гидроочистки (гидрирования) бензина каталитического крекинга

- 1, 5 теплообменники; 2, 6 печи; 3 реактор; 4 разделительная колонна;
- 7 реактор глубокой гидроочистки; 8 стабилизационная колонна;
- I бензин каталитического крекинга; II водород;
- III легкий гидрогенизат бензина каталитического крекинга; IV газ;
- V тяжелый гидрогенизат бензина каталитического крекинга

Контрольная № 2

- 1. Термический крекинг под давлением
- 2. Висбрекинг
- з. Замедленное коксование
- 4. Непрерывное коксование с газификацией (Flexicoking).
- 5. Пиролиз
- 6. Производство битумов
- 7. Установка каталитического крекинга с движущимся слоем катализатора
- 8. Установка каталитического крекинга с лифт-реактором
- 9. Установка каталитического крекинга остаточного сырья
- 10. Установка каталитического риформинга со стационарным слоем катализатора
- 11. Установка каталитического риформинга с движущимся слоем катализатора
- 12. Установка низкотемпературной изомеризации
- 13. Установка гидроочистки дизельных фракций
- 14. Установка гидроочистки вакуумного газойля
- 15. Установка гидроочистки бензина каткрекинга