Дисциплина «Органическая химия»

Лекция № 12

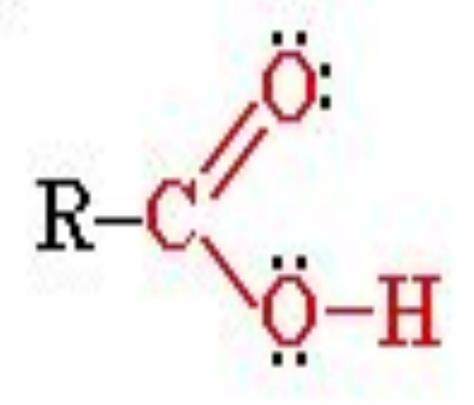
Тема:

Карбоновые кислоты

Цель

Расширить знания студентов по моно- и дикарбоновым кислотам.

Показать зависимость химических свойств карбоновых кислот от их строения.

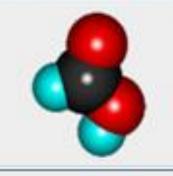

Изучить способы получения карбоновых кислот.

Показать значимость данной темы для фармации.

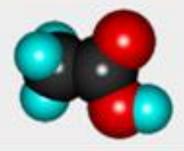
Вопросы, рассматриваемые на лекции

- 1.Классификация карбоновых кислот
- 2. Номенклатура и изомерия предельных монокарбоновых кислот
- 3. Номенклатура и изомерия предельных дикарбоновых кислот
- 4. Строение карбоксильной группы
- 5. Функциональные производные карбоновых кислот
 - 1. Образование солей
 - 2. Образование сложных эфиров R'-СООR".
 - 3. Образование амидов RCOONH2
 - 4.Галогенангидриды и ангидриды
- 6.Специфические свойства дикарбоновых кислот
- 7. Получение карбоновых кислот
 - 1. Окисление углеводородов
 - 2. Окисление альдегидов
 - 3. Окисление первичных спиртов
- 7. Значимость изучаемой темы.

Общая формула карбоновых кислот

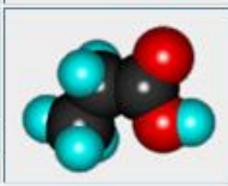

Простейшие карбоновые кислоты

Название


Формула

Модель

Муравьиная кислота (метановая) H-C_OH



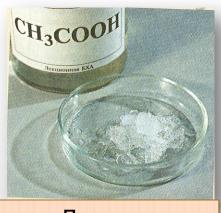
Уксусная кислота (этановая) CH₃-C^{∕O}

Пропионовая кислота (пропановая)

CH₃-CH₂-COOH

Многоосновные карбоновые кислоты

HOOC-CH2-COOH


Малоновая киспота CH₂-COOH HO-C-COOH CH₂-COOH

> Лимонная киспота

Название			Формула				Раство-	17
кислоты		её соли (эфиры)	Формула кислоты	тпл. °С	tкип. °C	r r/cm ³	(г/100мл H ₂ O;25°C)	Ка (при 25°C)
Муравьиная	метановая	Форми-	НСООН	8,3	100,5	1,22	¥	1,77·10-4
Уксусная	этановая	ацетат	CH ₃ COOH	16,8	118	1,05	¥	1,7·10 ⁻⁵
Пропионо-	пропановая	Пропио-	CH ₃ CH ₂ COOH	-21	141	0,99	¥	1,64·10-5
Масляная	бутановая	бутират	CH ₃ (CH ₂) ₂ COOH	-6	164	0,96	¥	1,54·10 ⁻⁵
Валериано-	пентановая	валерат	CH ₃ (CH ₂) ₃ COOH	-34	187	0,94	4,97	1,52·10-5
Капроновая	гексановая	Гекса-	CH ₃ (CH ₂) ₄ COOH	-3	205	0,93	1,08	1,43·10-5
Каприловая	октановая	Октано-	CH ₃ (CH ₂) ₆ COOH	17	239	0,91	0,07	1,28·10-5
Каприновая	декановая	Декано- ат	CH ₃ (CH ₂) ₈ COOH	32	269	0,89	0,015	1,43·10 ⁻⁵
Акриловая	пропеновая	акрилат	CH ₂ =CH-COOH	13		1,05		
Бензойная	бензойная	бензоат	C ₆ H ₅ COOH	122	250	1,27	0,34	1,43·10 ⁻⁵
Щавелевая	этандиовая	оксалат	COOH I COOH	189,(с разл.)		1,65		$K_1 = 5.9 \cdot 10^{-2}$ $K_2 = 6.4 \cdot 10^{-5}$
Пальмити- новая	гексадеканов ая	Пальми- тат	CH ₃ (CH ₂) ₁₄ COOH	63	219 (17мм)		0,0007	3,46·10 ⁻⁷
Стеарино-	октадеканов	стеарат	CH ₃ (CH ₂) ₁₆ COOH	70	383		0,0003	

Адипиновая, пробковая кислоты.

Ледяная уксусная кислота

Кристаллы монохлоруксусной кислоты.

Производные уксусной кислоты – ацетамид и ацетонитрил

Масляная, капроновая, маргариновая, стеариновая кислоты

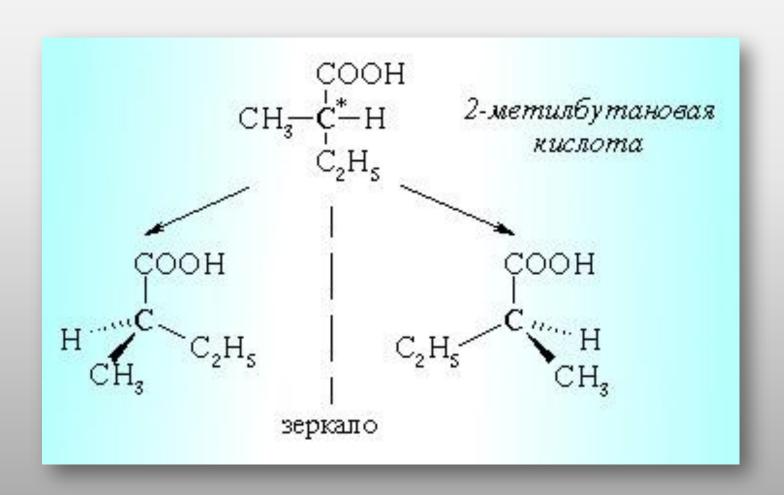
Игольчатые кристаллы бензойной кислоты

Изомерия скелета в углеводородном радикале, начиная с C4

Бутановая киспота (маспяная)

б) СН₃ – СН – СООН

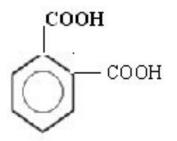
 СН₃
 2- метиштропановая киспота
 (изомасляная, α-метиппропионовая)

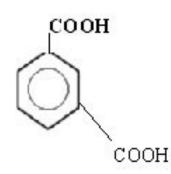

Межклассовая изомерия С₂H₄O₂

```
О
Н−С-осн₃
Метилформиат
(сложный эфир)
```

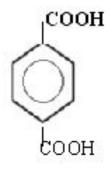
Межклассовая изомерия С₂H₄O₂

Пространственная изомерия


Оптическая изомерия

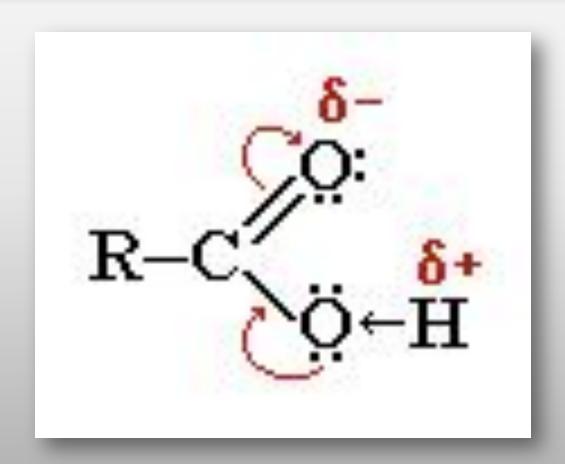

HOOC - COOH

Этандиовая (щавелевая)кислота


НООС – СН₂ – СН₂ – СООН Бутандиовая (янтарная) кислота

Бензол -1,2- <mark>дикарбоновая</mark> (фтали*е*вая) кислота

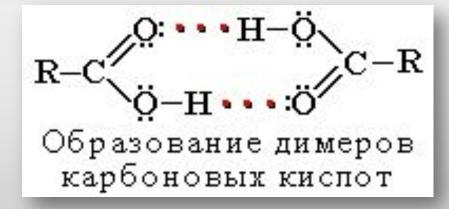
Бензол -1,3- <mark>дикарбоновая</mark> (изофталиевая) кислота



Бензол -1,4- <mark>дикарбоновая</mark> (терефталиевая) кислота

Формула	Тривиальное название к-ты	Т пл., °C	d ₄ ²⁵	P-римость в воде, при 20°C, г/100г	Константы диссоциации (вода, 25°C)	
				_	K ₁ 10 ⁵	K ₂ 10 ⁵
нооссоон	Щавелевая	179,5	1,653	8,0	5900	6,4
нооссн,соон	Малоновая	135	1,619	73,5	177	0,47
HOOC(CH ₂) ₂ COOH	Янтарная	188	1,572	5,8	6,89	0,25
HOOC(CH ₂) ₃ COOH	Глутаровая	97,5	1,424	63,9	4,58	0,53
HOOC(CH ₂) ₄ COOH	Адипиновая	153	1,344	1,6	3,7	0,53
HOOC(CH ₂) ₅ COOH	Пимелиновая	105,7	1,291	5,0	3,3	0,48
HOOC(CH ₂) ₆ COOH	Пробковая	144	1,266	0,16	3,07	0,47
HOOC(CH,),COOH	Азелаиновая	106,5	1,225	0,24	2,82	0,38
HOOC(CH ₂) ₈ COOH	Себаниновая	134.5	1,207	0,1	2,82	0.26**
nuc-HOOCCH=CHCOOH	Малеиновая	140	1.590	78,8*	1240	0,059
mpane-HOOCCH=CHCOOH	Фумаровая	296	1,635	0,69*	93	4,13
HOOCC ≡ CCOOH	Ацетилендикарбоновая	179			1850	4,02
2-C ₆ H ₄ (COOH) ₂	Фталевая	234	1,593	0,57	122	0,39
w-C ₆ H ₄ (COOH) ₂	Изофталевая	348	1,507	0,013	29	2,40
n-C ₆ H ₄ (COOH) ₂	Терефталевая	Возг	1,510	0,0019*	29	3,47

[•] При 25°C ••При 100°C

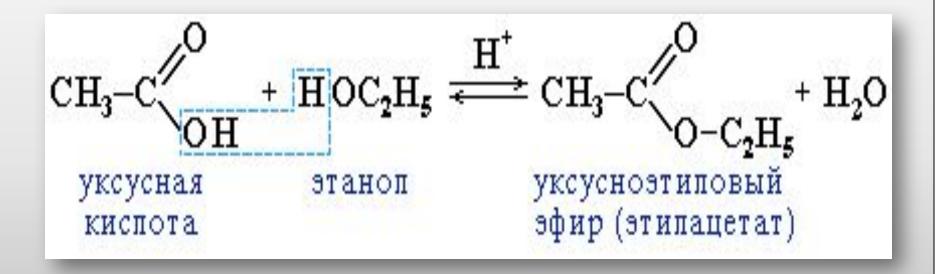

Строение карбоксильной группы

<u> Диссоциация кислот в водном</u>

растворе

$$R-COOH = RCOO^- + H^+$$

Функциональные производные карбоновых кислот

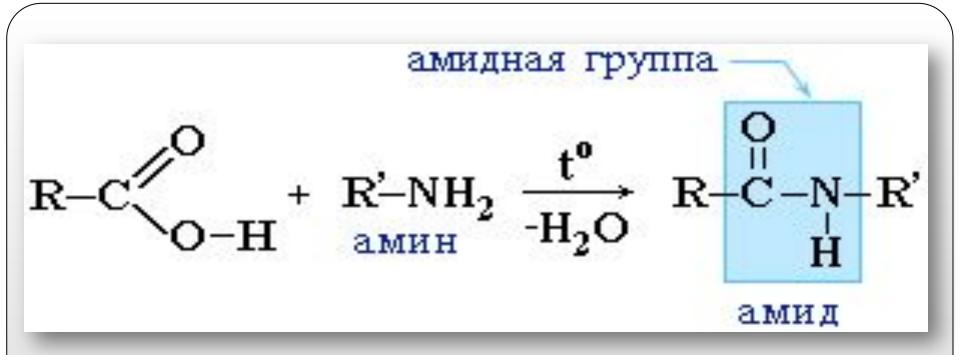

Ангидриды

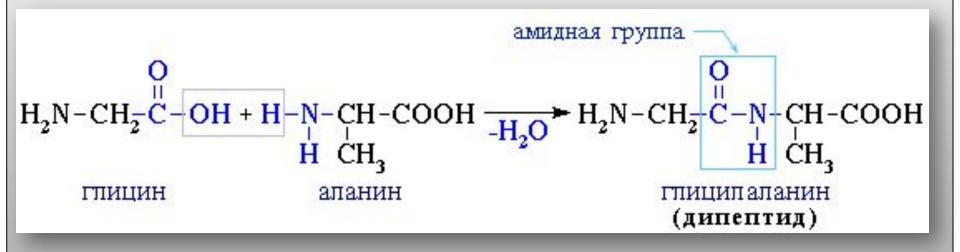
Химические свойства кислот

Образование солей

$$2CH_3COOH + Mg \rightarrow (CH_3COO)_2Mg + H_2$$

 $2CH_3COOH + CaO \rightarrow (CH_3COO)_2Ca + H_2O$
 $H-COOH + NaOH \rightarrow H-COONa + H_2O$
 $2CH_3CH_2COOH + Na_2CO_3 \rightarrow 2CH_3CH_2COONa + H_2O + CO_2$
 $2CH_3CH_2COOH + NaHCO_3 \rightarrow CH_3CH_2COONa + H_2O + CO_2$


Образование сложных эфиров R'-COOR"



Образование амидов RCOONH₂

$$R-C \stackrel{O}{\searrow}_{O-H} + NH_3 \longrightarrow R-C \stackrel{O}{\searrow}_{O^-NH_4^+} \xrightarrow{t^0} R-C \stackrel{O}{\searrow}_{NH_2}$$
 киспота сопь аммония амид

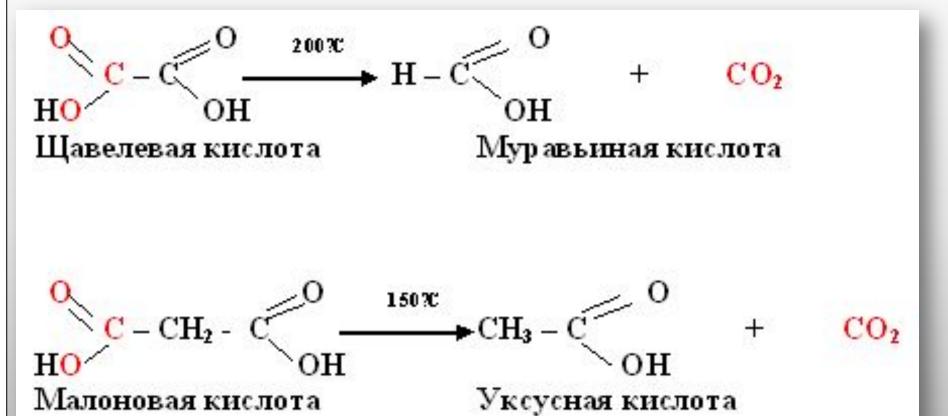
$${
m CH_3-C}$$
 ${
m CH_3-C}$ ${
m CH_3-C}$ ${
m NH_2}$ ${
m HCl}^{\uparrow}$ хлорангидрид ацетамид уксусной кислоты

 $({
m NH_2})_2{
m C}{=}{
m O}$ карбамид (мочевина)

Галогенангидриды и ангидриды

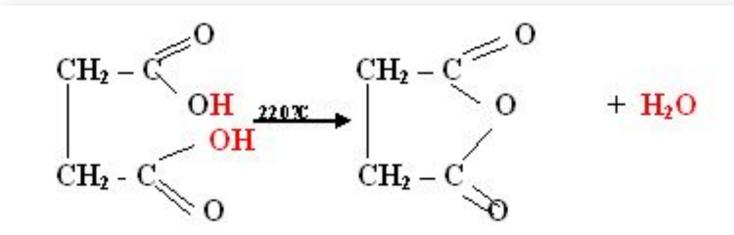
Образование галогенангидридов:

R-CO-OH + PCl₅
$$\longrightarrow$$
 R-CO-Cl + POCl₃ + HClî
R-CO-OH + SOCl₂ \longrightarrow R-CO-Cl + SO₂î + HClî


Получение ангидридов:

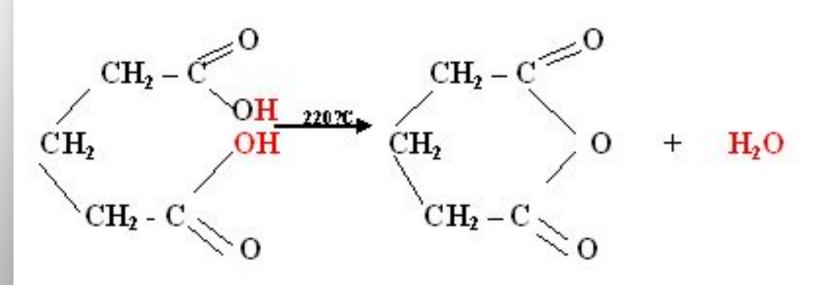
$$P_2O_5$$

R-CO-OH + HO-CO-R \longrightarrow R-CO-O-CO-R + H $_2$ O
R-CO-Cl + R'-COONa \longrightarrow R-CO-O-CO-R' + NaCl


Галогенирование

Полное окисление (горение) карбоновых кислот

$$\begin{array}{c} \textbf{CH}_{3}\textbf{COOH} + \textbf{2O}_{2} & \rightarrow & \textbf{2CO}_{2} + \\ \textbf{2H}_{2}^{3}\textbf{O} \end{array}$$



Уксусная кислота

Янтарная кислота

Янтарный ангидрид

Глутаровая кислота

Глутаровый ангидрид

Получение карбоновых кислот

1.Окисление углеводородов:

a) $R-CH_2-CH_2-R' \xrightarrow{6[O], \text{ Kat.}} R-COOH + HOOC-R'$ $-2H_2O$

$$KMnO_4(H^{\dagger}), t ^{\circ}C$$

 $R-CH=CH-R' \longrightarrow R-COOH + HOOC-R'$

в) окисление ароматических углеводородов

б)

Толуол обесцвечивает раствор КМпО4 (Н+) при нагревании.

Окисление алкилбензолов

$$_{\text{CH}_{3}}^{\text{CH}_{3}}$$
 $_{0}$ $_{\text{COOH}}^{\text{COOH}}$ $_{\text{COOH}}^{\text{COOH}}$ $_{0$

2. Окисление альдегидов:

$$R-CH=O \longrightarrow R-COOH$$

3. Окисление первичных спиртов:

$$R-CH_2-OH \xrightarrow{[O]} R-CH=O \xrightarrow{[O]} R-COOH$$

• Взаимодействие реактива Гриньяра с диоксидом углерода СО2

$$R-Br$$
 Mg $\delta-\delta+$ $R-MgBr$ $0=C=0$ \rhoeanmus $\Gamma punb яра$

 Щелочной гидролиз галогензамещенных углеводородов, содержащих три атома галогена у одного атома углерода:

$$R-CCl_3 \xrightarrow{3NaOH} [R-C(OH)_3] \xrightarrow{} R-COOH + H_2O$$
 $-3NaC1$

 Муравьиную кислоту получают нагреванием оксида углерода (П) с порошкообразным гидроксидом натрия:

 $200 \,^{\circ}\text{C, P}$ $H_2\text{SO}_4$ NaOH + CO \longrightarrow H-COONa \longrightarrow R—COOH

-NaH SO₄

Значимость изучаемой темы

- •Широкое распространение в природе и участие в обменных процессах, протекающих в организме
- •Конечные продукты распада жиров уксусная и другие кислоты.
- •Соли щавелевой кислоты оксалаты. Некоторые из них (например, оксалат кальция) трудно растворимы и часто образуют камни в почках и мочевом пузыре.

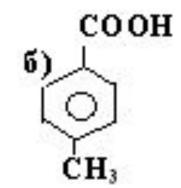
Значимость изучаемой темы

- •Карбоновые
- килоты
 - •Валериановая кислота •Витамин Н (биотин)
 - Арахидоновая кислота
 - Простагландины сильнодействующие биорегуляторы.

Значимость изучаемой темы

- •Линетол
- •Веронал
- •Валидол

- •ацетат натрия •ацетат свинца (II)
- •бензоат натрия


- 1. Функциональную группу СООН содержат молекулы . . .
- Ответ 1 : сложных эфиров
- Ответ 2 : простых эфиров
- Ответ 3 : спиртов
- Ответ 4 : альдегидов
- Ответ 5 : кетонов
- Ответ 6 : карбоновых кислот

- 2. Какое вещество образуется при окислении пропаналя?
- Ответ 1 : пропанол
- Ответ 2 : пропиловый эфир уксусной кислоты
- Ответ 3 : пропионовая кислота
- Ответ 4 : метилэтиловый эфир

- З. Этилацетат можно получить при взаимодействии . . .
- Ответ 1 : метанол + муравьиная кислота
- Ответ 2 : этанол + муравьиная кислота
- Ответ 3: метанол + уксусная кислота
- Ответ 4 : этанол + уксусная кислота

- 4. Для получения 1,5 моль этилового эфира муравьиной кислоты
- израсходовано 138 г этанола. Какова массовая доля выхода эфира
- в % от теоретически возможного?
- Ответ 1 : 50%
- Ответ 2 : 75%
- Ответ 3 : 85%
- Ответ 4 : 95%

1. Назовите соединение по номенклатуре ІИРАС:

а) 3-метилпентановая кислота б) 4-метилбензойная кислота

2. Назовите соединение по номенклатур е ІИРАС, дайте тривиальное название:

a)
$$CH_2CI - CH_2 - COOH$$

- a) $CH_2CI CH_2 COOH$
- а) 3-хлорпропановая кислота
- (β хлорпропионовая)

- б) HOOC CH₂ CH₂ COOH
 - б) бутандиовая кислота (янтарная)

 Почему хлорангидриды карбоновых кислот более энергичные ацилирующие реагенты, чем сами кислоты?

 Чем объясняются более кислые (по сравнению со спиртами) свойства карбоновых кислот?

Самостоятельная внеаудиторная работа студентов:

Составить 10 тестов первого уровня, 5 тестов второго уровня по тексту лекции.

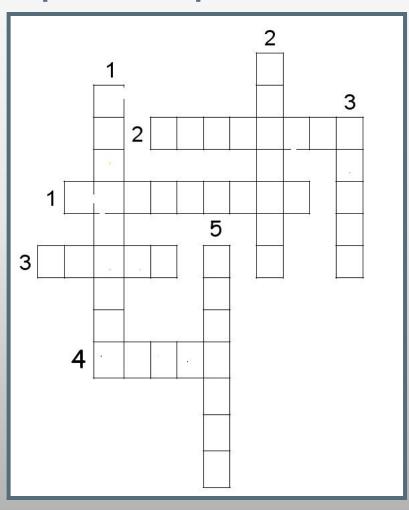
Литература:

Основная литература:

- Л.М.Пустовалова
 «Органическая химия» стр.
 174-195
- Дополнительная литература:
- А.С. Егоров и др. «Химия».
 Ростов на Дону «Феникс»,
 2005.
- «Органическая химия».
 Основной курс. Под ред.
 Тюкавкиной Н.А. Москва.
 Дрофа.2003

Пример выполнения внеаудиторного задания

Тесты 1 уровня


- 1.Среди перечисленных веществ выберите те, которые являются изомерами масляной (бутановой) кислоты:
- -2-метилпропаналь;
- -метилформиат;
- +этилацетат;
- -2-этилпропаналь;
- 2.Укажите гомолог щавелевой кислоты.
- -молочная кислота;
- -муравьиная кислота;
- +2-метилпропандиовая кислота;
- -метакриловая кислота.

Тесты 2 уровня

+метанолом

1. Олеиновая кислота является
жирной кислотой:
+ненасыщенной.
2. Метилацетат можно
получить при
взаимодействии
уксусной кислоты с

Образец – составление кроссворда.

- По вертикали:
- 1.Дикарбоновая кислота
- 🕨 (щавелевая)
- По горизонтали:
- 1. Простейшая монокарбоновая кислота
- (метановая)