Тема: Кислородные соединения азота

Цели:

Сформировать представление о строении кислородных соединений азота.

Рассмотреть физические и химические свойства кислородных соединений азота в свете OBP.

Оксиды азота:

C.O	+ 1	+ 2	+ 3	+ 4	+ 5
Оксиды	N ₂ O	NO	N ₂ O ₃	NO ₂	N ₂ O ₅
	несолеобразу		кислотные		

ющие

Братякова С.Б. 29.10.2016

N,O, NO — несолеобразующие оксиды

 N_2O_3 — ангидрид азотистой кислоты (HNO $_2$)

 $oldsymbol{\mathsf{NO_2}}$ и его димер $oldsymbol{\mathsf{N_2O_4}}$ — ангидриды азотистой (HNO $_2$) и азотной кислот (HNO $_3$)

 N_2O_5 — ангидрид азотной кислоты (HNO $_3$)

Вещества, образующиеся из оксидов азота:

- NO несолеобразующие
- $N_2^{+3}O_3^{-2}$ HNO₂ Соли нитриты
- $NO_2 + H_2O = HNO_3 + HNO_2$

- HNO₃

Соли нитраты

Свойства несолеобразующих оксидов

$$2N_2O+C = CO_2+2N_2$$
 (450-600°C)

$$2NO + O_2 = 2NO_2$$

$$NO + NO_2 = N_2O_3$$
 (охлаждение)

Братякова С.Б. 29.10.2016

5

Свойства солеобразующих оксидов $N_2O_3 + H_2O_{(xon)} = 2 HNO_2$

$$3N_2O_3 + H_2O_{(rop)} = 2HNO_3 + 4NO$$

$$2NO_2 + H_2O_{(xox.)} = HNO_3 + HNO_2$$

$$3NO_2 + H_2O_{(rop.)} = 2HNO_3 + NO$$

$$NO_2 + SO_2 = NO + SO_3$$

$$N_2O_5 + H_2O = 2 HNO_3$$

$N_2O_5 + 2 NaOH = 2 NaNO_3 + H_2O$

ова С.Б. 29.10.2016

АЗОТНАЯ КИСЛОТА.

Физические свойства:

- ✓ 1. жидкость,
- ✓ 2. без цвета,
- ✓ 3. резкий запах,
- ✓ 4. дымит (летучая),
- ✓ 5. неограниченно растворяется в воде,
- ✓ 6. разлагается на свету (хранят в
- банках из темного стекла)

Получение азотной КИСЛОТЫ

Лабораторный способ:

$$KNO_3 + H_2SO_4 = HNO_3 + KHSO_4$$

Промышленный способ: $4NH_3 + 50, \implies 4NO + 6H_2O$ (800°C,Pt uRh) $2NO + O_2 \leq 2NO_2$ $4NO_{2} + O_{2} + 2H_{2}O = 4HNO_{3}$

Свойства азотной кислоты

$$CuO + 2HNO_3 = Cu(NO_3)_2 + H_2O$$

$$Zn(OH)_2 + 2HNO_3 = Zn(NO_3)_2 + 2H_2O$$

$$Na_2CO_3 + 2HNO_3 = 2NaNO_3 + H_2O + CO_2$$

Братякова С.Б. 29.10.2016

10

Особые свойства азотной кислоты

$$S + 6HNO_3 = H_2SO_4 + 6NO_2 + 2H_2O$$
 (кип.)

$$\mathbf{C} + 4\mathbf{H}\mathbf{N}\mathbf{O}_3 = \mathbf{C}\mathbf{O}_2 + 4\mathbf{N}\mathbf{O}_2 + 2\mathbf{H}_2\mathbf{O}$$

$$3 \text{ Cu} + 8 \text{ HNO}_{3(p)} = 3 \text{ Cu}(\text{NO}_3)_2 + 2 \text{ NO} + 4 \text{ H}_2\text{O}$$

$$Cu + 4HNO_3 = Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

С концентрированной HNO,

С разбавленной НОО3

Особые свойства НNО₃.

- 1. HNO₃ + Me = реагируют все металлы кроме Au, Pt.
- \circ 2. HNO₃ + Me = водород не выделяется
- **©** 3. HNO_{3 (конц.)} + (Al, Fe, Pb, Ni, Cr, Be) ≠ пассивируются
- 4. HNO_{3(разб)} + (Al, Fe, Pb, Ni, Cr, Be) = реакция идёт

29.10.2016

Растворение благородных металлов в «Царской водке»

Выделение свободного хлора:

$$3 HCl + HNO_3 = Cl_2 + NOCl + 2 H_2O$$

Окисление Au и Pt:

Au
$$+3$$
 HCl $+$ HNO₃ = AuCl₃ + NO $+2$ H₂O
 3 Pt $+4$ HNO₃ + 12 HCl = 3 PtCl₄ + $+4$ NO $+8$ H₂O

Домашнее задание

§ 26

Упр. 1,2, 4