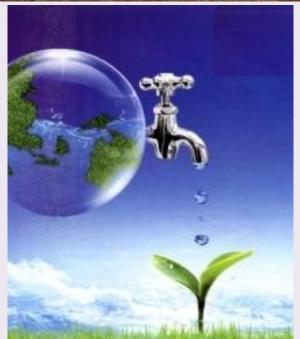
ФГБОУ ВПО «ВГУИТ» Кафедра физической и аналитической химии

Курсовая работа на тему:

«Пьезокварцевое микровзвешивание солей в воде»

Выполнил: студент группы Х-131 Грибоедова И. А. Научный руководитель: проф. Кучменко Т. А.

Все воды (природные, промышленные, питьевые, сельскохозяйственные) классифицируются по содержанию растворенных соединений:


- 1. Пресные до 1 г/дм³ ;
- 2. Солоноватые 1-10 г/дм³ ;
- 3. Соленые $10 50 \, \text{г/дм}^3$;
- 4. Рассолы больше 50 г/дм³

Показатель минерализации воды – нормируемый показатель качества

По СанПиН 2.1.4.559-96

для хозяйственно-питьевых целей, сухой остаток не должен превышать 1 г/дм3, в особых случаях – 1,5 г/дм³.

Стандартные методы анализа.

Преимущества и недостатки

Гологова и подоста

ТКИ Кондуктометрия

Гравиметрия

Сушильный шкаф

- + Высокая точность (< 0,1%);
- + Надежность;
- + Анализ нескольких проб одновременно;
- Длительность определений;
- Невысокая селективность весового анализа

Влагомер

- + Высокая точность± 0,1 % ;
- + Надежность;
- + Сокращение длительности определения в несколько раз;
- Возможна автоматизация измерения;
- Анализ одной пробы;
- Невысокая селективность весового анализа

- + Высокая точность (0,1- 2%);
- + Высокая чувствительность (10⁻⁴-10⁻⁵);
- + Прост в методике;
- Быстрота проведения анализа;
- + Возможность исследования окрашенных и мутных растворов;
- + Автоматизация анализа;
- Малая селективность;
- Ошибки за счет примесей постороннего электролита

Цели и задачи работы:

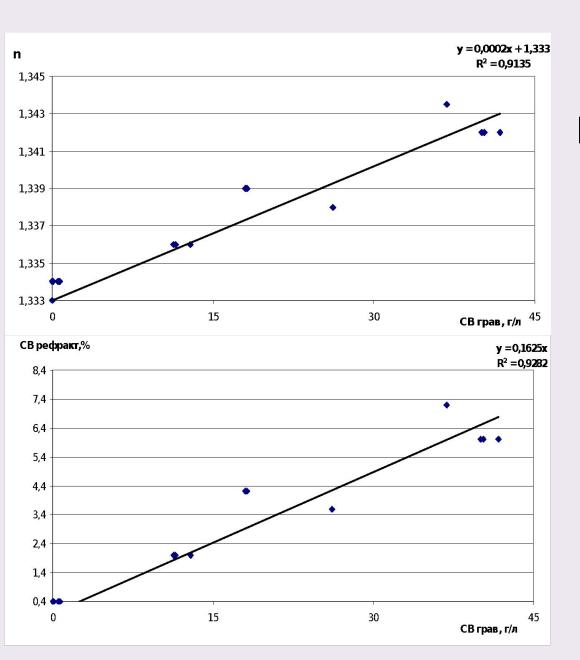
Цель работы:

Разработка нового способа оценки уровня минерализации природных вод

Задачи работы:

- 1. Освоить стандартные методы анализа природных вод сухому остатку;
- 2. Оценить возможность пьезокварцевого микровзвешивания единичным пьезокварцевым резонатором;
- 3. Разработать методику взвешивания солей единичным сенсором в природной воде;
- 4. Оценить метрологические характеристики пьезокварцевого микровзвешивания нерастворенных соединений в природной воде

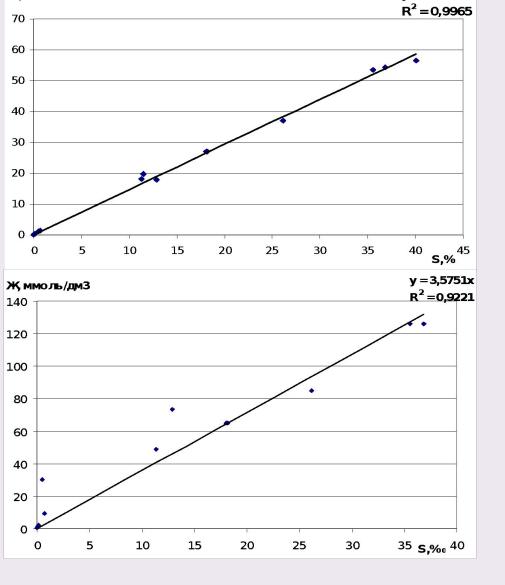
Стандартные методы анализа воды:


- 1. Гравиметрический в сушильном шкафу по ПНД Ф 14.1:2.114-97;
- 2. Кондуктометрический на кондуктометре HI 2314-02 (æ ± 1%);
- 3. Комплексонометрический титрование комплексоном III с эриохромовым черным Т;
- 4. Рефрактометрический рефрактометр лабораторный РПЛ-4;

Число повторений n = 3

Стандартные показатели анализируемых проб

Название воды	Сухие вещества (грав)	æ, mS	Ж _{0,} ммоль/дм ³	Сухие вещества (рефракт)	n
Нева (март 2015)	0,05 ± 0,01	0,20 ± 0.01	1,47	0,4	1,334
Boating озеро	0,71 ± 0,06	1,30 ± 0.01	9,20	0,4	1,334
Таганрыгский залив	11,32 ± 8,08	18,20 ± 0.10	48,80	2,0	1,336
Каспийское море	12,89 ± 0,01	17,90 ± 0.10	73,48	2,0	1,336
Черное море 2014	18,16 ± 1,97	27,10 ± 0.10	65,05	4,2	1,339
Белое море	26,18 ± 2,29	36,90 ± 0.10	84,73	3,6	1,338


показателя сухие вещества

Наихудшая корреляция наблюдается между показателем преломления и сухими веществами. Объясняется не чувствительностью метода рефрактометрии

Корреляция зависимости электропроводности и жесткости от показателя сухие вещества

y = 1,4643x

æ. mS

Плохая корреляция установлена между жесткостью и сухими веществами

Наилучшая корреляция установлена для показателя электропроводности и сухих веществ, т.к. жесткость определяет только комплексообразующие ионы металлов, а электропроводность зависит от подвижности ионов раствора

Пьезокварцевое микровзвешивание


Пьезокварцевое микровзвешивание - метод измерений, основанный на применение масс-чувствительных пьезорезонаторов

Пьезокварцевые микровесы - измерительные автогенераторные устройства, предназначенные для преобразования изменений массы, присоединенной к поверхности кварцевого пьезорезонатора, в приращения выходных частот

Частота колебаний пьезорезонаторов ОАВ – типа связана с массой вещества на электроде прямо пропорционально и описывается уравнением Зауэрбрея:

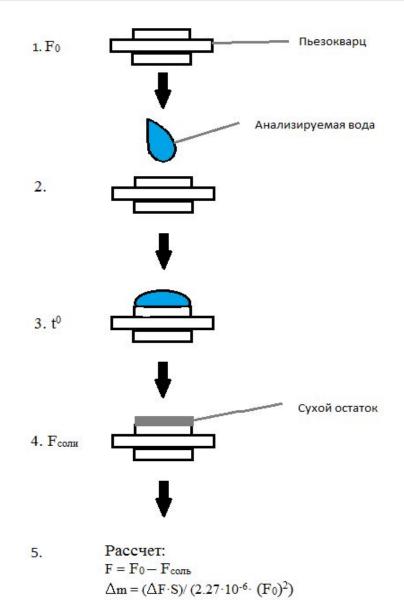
$\Delta F = k^* \Delta m$,

Преимущества и недостатки

- + Универсальность;
- + Высокая чувствительность (до 10⁻¹¹ г);
- + Устойчивость к изменению температуры
- + Компактность;
- + Доступность;
- + Устойчивость к физическому и химическому воздействию кварца и электродов;
- + Простота аппаратуры
- Чувствительность к изменению температуры во время измерений;
- Хрупкость

Объекты исследования

- 1. Стандартный раствор NaCl (c=1.000 г/дм³)
- 2. Бидистиллированная вода;
- 3. Дистиллированная вода;
- 4. Талая (снеговая) вода;
- 5. Природная вода с небольшой соленостью (Кировоканский водопровод, Boating озеро, залив Акоба);
- 6. Соленые воды (Балтийское море, Тагонрогский залив, Азовское море, Белое море);


Приборы

- 1. Анализатор газа «САГО» с одним пьезокварцевым резонатором;
- 2. Пьезокварцевый резонатор ОАВ-типа с серебренным покрытием электродов, F_0 = 10,0 МГц, $S_{\text{элек}}$ = 0,2 см;
- 3. Микрошприц V = 10 мкл;
- 4. Эксикатор с осушителем;
- 5. Сушильный шкаф (50-95°C)

Алгоритм одностороннего горизонтального микровзвешивания солей в воде

- Устанавливание нулевого сигнала пьезокварцевого резонатора F₀ ± 1 Гц;
- 2. Отбор пробы V = 1-5 мкл и нанесение раствора на 1 электрод;
- 3. Сушка;
- 4. Охлаждение пьезокварцевого резонатора и измерение конечного сигнала F ± 1 Гц;
- Расчет ∆m по уравнению Зауэрбрея.

Число повторений n=3.

Градуировка пьезовесов

По стандартному раствору NaCl с концентрацией 1,000 г/дм³ были отградуированы пьезокварцевые весы с нагрузкой на одну сторону

Введе	но	Найдено					
Vпробы, мкл	m, мкг	F ₀ , Гц	F, Гц	ΔF, Гц	т, мкг	Δ,	
1	1	9982286	9975891	5703	5,0 ± 0,2	3	

Формула для нахождения соли в воде:

$$m_{ ext{coлu}} = rac{\Delta m}{5}$$

Оптимизация методики пьезокварцевого микровзвешивания

Оценка чувствительности метода: Разработка методики планирования эксперимента:

- 1. Бидистиллированная;
- 2. Дистиллированная;
- 3. Талая(снеговая)

- Пресная (Кировоканский водопровод);
- 2. Средней солености (Балтийское море)

Обессоленные воды

$$(æ_{\text{бидис}} = 0,0012 \text{ mS}, æ_{\text{дис}} = 0,0055 \text{ mS}, æ_{\text{талая}} = 0,0158 \text{ mS})$$

$$V_{\rm проб}$$
 -1 мкл; $au_{\rm cym}$ - 15 мин; $t_{\rm cym}$ - 95 °C

Для этой категории вод предлагаемое решение не пригодно

F0, Гц	F, Гц 🛮 🛆 F, Гц		Δт,мкг					
Бидистиллированная вода								
9989276	9989317	-41	-					
Ди	Дистиллированная вода							
9991780	9991824	-44	-					
Талая снеговая вода								
9990402	9990578	-176	-					

Планирование эксперимента для вод с различающейся минерализацией: Уровни варьирования переменных:

$$X_1(-)$$
 $V_{\text{проб}}$ 1 мкл; $X_1(+)$ $V_{\text{проб}}$ 5 мкл; $X_2(-)$ $\tau_{\text{суш}}$ 5 мин.; $X_2(+)$ $\tau_{\text{суш}}$ 15 мин.; $X_3(-)$ $t_{\text{суш}}$ 50°C $X_3(+)$ $t_{\text{суш}}$ 95°C

Матрица планирования 2³:

No	Факторы						
Nº	V, мкл.	t, °C	т, мин.	X ₁₂	X ₁₃	X ₂₃	X ₁₂₃
1	-	-	=	+	+	+	-
2	+	-	•	-	-	+	+
3	+	-	+	•	+	-	-
4	-	-	+	+	-	-	+
5	-	+	ı	ı	+		+
6	+	+	-	+	-	-	-
7	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+

Результаты эксперимента для воды из Кировоканского водопровода

Факторы		F F	F F	ΔF,		A 0/	B	
V, мкл.	t, °C	τ, мин.	F ₀ , Гц	F, Гц	Гц	т, мкг	Δ,%	Поведение сенсоров
1	50	5	9989835	9988059	1777	1,6 ± 0,6	40	Частота устанавливается быстро
5	50	5	9988931	9988931 —			300	Вода полностью не высохла
5	50	15	9987983	9987068	915	0,8 ± 0,7	96	Большой объем воды, трудно размещается на сенсоре
1	50	15	9988970	9987413	1558	1,4 ±2,3	170	Частота устанавливается быстро
1	95	5	9988419	9986929	1490	1,3 ± 0,4	33	Частота устанавливается быстро
5	95	5	9967394	9966475	919	0,8 ± 0,9	113	Большой объем воды, трудно размещается на сенсоре
1	95	15	9985791	9984165	1627	1,4 ±2,9	206	Частота устанавливается быстро
5	95	15	9977183	9976747	436	0,4 ± 2,2	561	Большой объем воды, трудно размещается на сенсоре

Результаты эксперимента для воды из Балтийского моря

	Факторы							
V, мкл	t, °C	т, мин.	F ₀ , Гц	F, Гц	ΔF, Гц	т, мкг	Δ,%	Поведение сенсоров
1	50	5	9987039	9963031	24008	21,2 ±10,6	50	Частота устанавливается долго
5	50	5	9984418	_			400	Вода полностью не высохла
1	50	15	9985873	9961881	23993	21,2 ±6,9	33	Частота устанавливается в течение 2-5 мин.
5	50	15	9979943	9966765	13178	11,7 ± 24,1	206	Большой объем, трудно разместить на сенсоре
1	95	5	9982538	9966810	15729	13,9 ± 20,2	145	Частота устанавливается долго
5	95	5	9987835	9969074	18761	16,7 ± 4,8	29	Большой объем воды, трудно размещается на сенсоре
1	95	15	9966863	9950571	16292	14,5 ± 3,5	24	Частота устанавливается быстро
5	95	15	9967158	9956106	11053	9,8 ± 19,6	200	Большой объем воды, трудно размещается на сенсоре

Уравнение регрессии для пресной воды

$$Y_{\text{пр.в.}} = 190 + 78,4 \cdot X_1 + 38,4 \cdot X_2 + 68,2 \cdot X_3 + 31,2 \cdot X_1 \cdot X_2 - 7,3 \cdot X_{1,} \cdot X_3 + 86,9 \cdot X_2 \cdot X_3 + 76,1 \cdot X_1 \cdot X_2 \cdot X_3$$

Погрешность определения массы соли после выпаривания воды не допустима для аналитического решения.

Выбранные уровни варьирования факторов не обеспечивают возможность проведения эксперимента по определению сухого остатка в малосоленой (пресной) воде

Уравнение регрессии для соленой воды

$$\begin{split} Y_{c.6.} &= 136 + 73 \cdot X_1 - 36, 4 \cdot X_2 - 20, 2 \cdot X_3 - 57, 9 \cdot X_1 \cdot X_2 + 14, 4 \cdot X_{1,} \cdot X_3 + \\ &+ 32, 6 \cdot X_2 \cdot X_3 + 58, 6 \cdot X_1 \cdot X_2 \cdot X_3 \end{split}$$

Погрешность	X ₂	t сушки
10%	55,14	1313,15 °C
5%	62,29	1474,03 °C
2%	66,57	1570,33 °C

Погрешность	X_3	τ
10%	5,67	38,35 мин.
5%	5,87	39,35 мин,
2%	5,98	39,90 мин.

Различия в t_{сушки} не являются удобными. Тем более, что при равном t_{сушки} Y уменьшается в интервале 2-5%.Это означает что увеличение параметра не приводит к адекватному снижению функции и не целесообразно.

 $au_{\text{сушки}}$ аналогично воздействует на функцию

Возможная минимальная погрешность микровзвешивания солей морской воды при ранее выбранных уровнях:

$$Y_1$$
: X_1 = -1 X_2 = +1 X_3 = +1 Y_1 =23,9 %(экспериментальное значение 23,4%)

и рассчитанных:

$$Y_2$$
: $X_1 = -1$ $X_2 = +1,25 (100 °C)$ $X_3 = +1,35 (17мин.)$ $Y_2 = -8677,3\%$

Отрицательное значение Y₂ подтверждает нецелесообразность измерения и выше ранее выбранных наибольших значений.

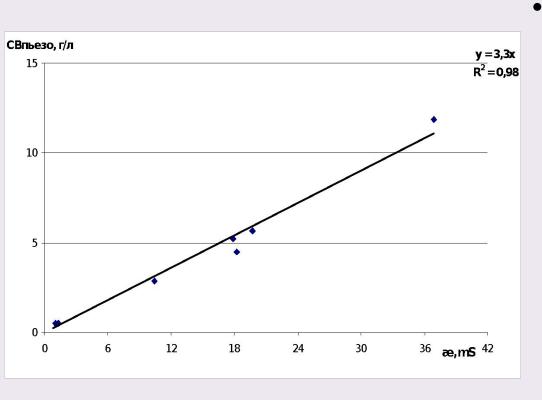
Оптимальные условия микровзвешивания растворимых солей в воде с повышенной соленостью (æ=2-12mS; сухой остаток =1-8 г/дм³) с погрешностью не более 25% является:

$$V_{\text{пробы}} = 1$$
мкл $t_{\text{сушки}} = 95^{\circ}$ С $\tau_{\text{сушки}} = 15$ мин.

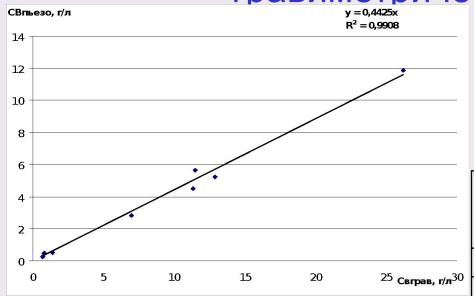
Расширение объектов исследования

1. Упаривание пробы в 5-10 раз из объема 2,5 или 5 мл досуха и растворением разбавлением в 0,5 см³ дистиллированной воды. (с электропроводностью меньше 2 mS, сухой остаток меньше 1 г/дм³);

V, мл	F ₀ , Гц	F , Гц	ΔF, Γц	т, мкг	Δ, %		
Кировоканский водопровод							
2,5	9982235	9980787	3532	3,1 ± 0,7	23		
5	9984870	9979549	5321	4,7 ± 4,0	85		


1. Разбавление вод (с электропроводностью выше 12 mS, сухой остаток выше 8 г/дм³)

Результаты пьезокварцевого микровзвешивания


Название воды	æ,mS	Разбавление / предконцентрирование	т, мкг
Белое море	36,90 ± 0,10	Разбавление в 3 раза	11,88 ± 2,52
Азовское море	19,75 ± 0,10		5,64 ± 1,24
Таганрогский залив	18,24 ± 0,01	Разбавление в 2 раза	4,52 ± 0,90
Каспийское море	17,90 ± 0,10		5,10 ± 1,20
Балтийское море 25.06.14	10,97 ± 0,10	-	2,8 ± 0,68
Boating озеро	1,28 ± 0,01	Пропускционтрирование	0,48 ± 0,12
Залив Акоба	1,05 ± 0,01	Предконцентрирование в 5 раз	0,50 ± 0,04
Кировоканский водопровод	0,76 ± 0,01		0,25 ± 0,06

Корреляционный график сухих веществ (пьезо) от электропроводности

Установлена высокая степень корреляции между результатами пьезокварцевого микровзвешивания и значений электропроводности Это доказывает правильность и правомочность применения пьезокварцевого микровзвешивания для оценки сухих веществ в воде

Корреляционный график сухих веществ пьезокварцевого микровзвешивания от гравиметрического метода

Определенно

1 26,8 26,2 2 2 12,7 11,5 10 3 11,8 12,9 9 4 10,2 11,3 10 5 6,4 7 8 6 1,1 1,4 21 7 0,5 0,7 28 8 1 0,8 25	Пробы	По уравнению (1), г/дм ³	стандартным методом, г/дм ³	Δ,%
3 11,8 12,9 9 4 10,2 11,3 10 5 6,4 7 8 6 1,1 1,4 21 7 0,5 0,7 28	1	26,8	26,2	2
4 10,2 11,3 10 5 6,4 7 8 6 1,1 1,4 21 7 0,5 0,7 28	2	12,7	11,5	10
5 6,4 7 8 6 1,1 1,4 21 7 0,5 0,7 28	3	11,8	12,9	9
6 1,1 1,4 21 7 0,5 0,7 28	4	10,2	11,3	10
7 0,5 0,7 28	5	6,4	7	8
	6	1,1	1,4	21
8 1 0,8 25	7	0,5	0,7	28
	8	1	0,8	25

Полученное уравнение можно применять для расчета сухих веществ стандартного показателя

Общая характеристика методики

	æ, mS	Сухие вещества , г/дм³	Время проботбора, мин	Время измерения, мин	Δ,%
С предварительным концентрированием	0,1-2	0,05-1	5 - 10	20	25
Без изменения	2-12	1-8	5	20-25	10
С предварительным разбавлением	12 и выше	8 и выше	5 - 10	25	10

Срок службы пьезорезонаторов - 3-4 месяца (не менее 100 взвешиваний);

Объекты исследования: все воды без взвесей с æ от 1 до 100 mS.

Методика возможна для определения показателя качества пищевых продуктов «сухие вещества».

Выводы:

- 1. Освоили стандартные методы анализа природных вод по нахождению сухого остатка;
- 2. Оценили возможность пьезокварцевого микровзвешивания единичным пьезокварцевым резонатором;
- 3. Разработали методику взвешивания солей единичным сенсором в природной воде;
- 4. Оценили метрологические характеристики пьезокварцевого микровзвешивания нерастворенных соединений в природной воде