Двенадцатый Международный Конгресс молодых ученых по химии и химической технологии «МКХТ-2016»
Российский химико-технологический университет им. Д.И. Менделеева

«Модифицирование структуры хитозана аллильными заместителями: твердофазный синтез, исследование структуры и свойств»

Факультет нефтегазохимии и полимерных материалов Кафедра химической технологии пластических масс

Руководители:

д.х.н., зав. каф. хим. техн. пласт. масс

Киреев В.В.

д.х.н., вед. науч. сотр. ИСПМ РАН

Акопова Т.А.

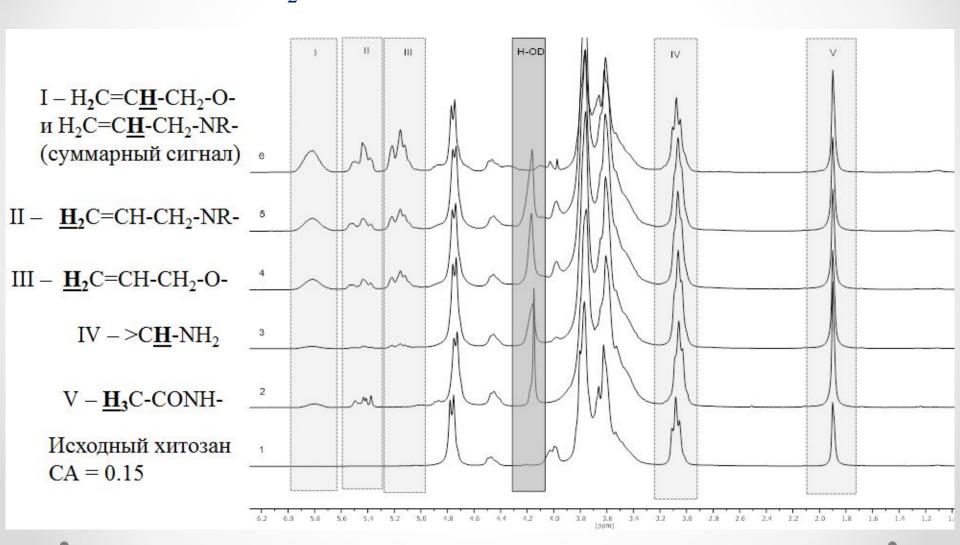
<u>Выполнил:</u>

магистрант 2 курса группы МП-21

Хавпачев М.А.

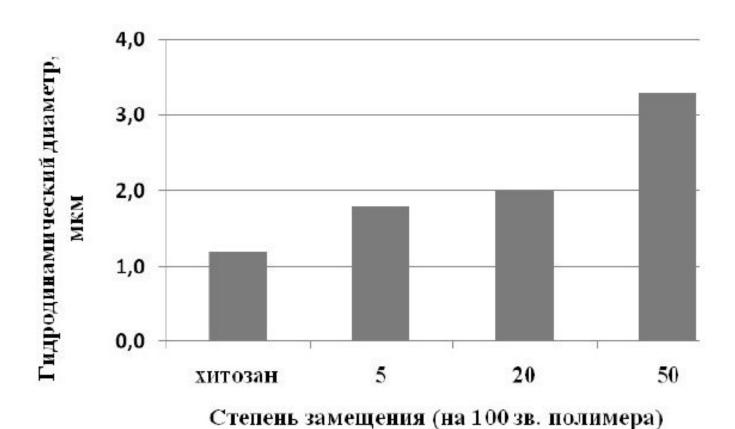
<u>Цель работы:</u> выявление закономерностей твердофазного синтеза аллилзамещенных производных хитозана и изучение их структуры и свойств.

<u>Объект исследования</u>: хитозан и его ненасыщенные производные (аллилхитозан с различной степенью замещения функциональных групп хитозана аллильными заместителями, полученный методом твердофазного синтеза).

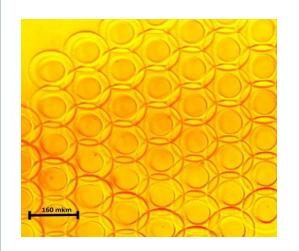

Методы исследования: ЯМР-спектроскопия; метод динамического светорассеяния.

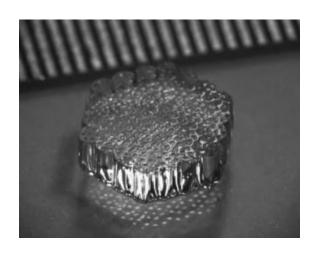
Температура обработки реакционных смесей в экструдере : -5°C

СОСТАВ РЕАКЦИОННЫХ СМЕСЕЙ И СТЕПЕНЬ ЗАМЕЩЕНИЯ ФУНКЦИОНАЛЬНЫХ ГРУПП ХИТОЗАНА


Образец, №	Мольное соотношение Хитозан : АБ : NaOH	Суммарная СЗ на 100 звеньев полимера	Соотношение N- и О-замещенных групп
1	1:0.5:0	10	_
2	1:0.5:2	4.5	1:2
3	1:1:2	17	1:1.8
4	1:1.5:2	21	1:1.7
5	1:2:2	50	1:1.5

Спектры ЯМР 1 Н, 13 С и 13 С- $\{^{1}$ Н} АРТ регистрировали на спектрометре Bruker Avance II 300 с рабочей частотой для 1 Н 300 МГц в растворах D_{2} О с добавлением НСl при температуре 90° С.


СИНТЕЗ АЛЛИЛХИТОЗАНА В СРЕДЕ ИПС (70 °C) (ЛИТЕРАТУРНЫЕ ДАННЫЕ)


Мольное соотношение Хитозан : АБ : NaOH	Суммарная СЗ на 100 звеньев полимера (ИПС/твердофазный синтез)	Относительное кол-во прореагировавшего АБ (ИПС/твердофазный синтез), %
1:0.5:0.75	7.7	15
1:2:3	22 / 50	11 / 25
1:5:5.5	84	17

Зависимость гидродинамического диаметра от степени замещения функциональных групп хитозана (ММ = 80 000) аллильными фрагментами. Концентрация растворов 0,02 г/дм³.

Структуры, полученные на установке лазерной микростереолитографии ИПЛИТ РАН

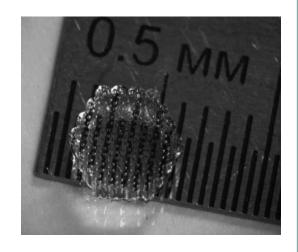


Рисунок – Микрофотографии структур и массивов, полученных при 2-х фотонной полимеризации аллилхитозана. Формировали полые цилиндры с внешним диаметром 160 мкм, внутренним диаметром 80 мкм и высотой 80 мкм

- Структурирование проводили при воздействии лазерного источника TEMA-1053/100 (Авеста-Проект, Россия) с использованием второй гармоники фемтосекундного лазера (80 фс, 69.7 МГц, 1050 нм) и объектива микроскопа Epiplan 20× (Zeiss, Oberkochen, Germany).
- □ Полученные структуры отмывали от остатков несшитого материала последовательной циклической обработкой дистиллированной водой, 2%-ной уксусной кислотой и водным аммиаком.

- Реакция аллилирования хитозана в условиях твердофазного синтеза подчиняется общим закономерностям реакций алкилирования полисахаридов с помощью галоидных алкилов: протекает в соответствии с механизмом SN2 нуклеофильного замещения, согласуясь с различием в нуклеофильности функциональных групп полимера в условиях каталитической и некаталитической реакции; зависит от соотношения реагентов и приводит к образованию аллилзамещенных производных хитозана с более высоким выходом по сравнению с аналогичным процессом в среде органического растворителя.
- Механическая активация твердых реакционных смесей позволяет существенно снизить расход реагентов, продолжительность и температуру процесса.
- Материалы на основе синтезированных непредельных производных хитозана пригодны для использования в качестве матриц-носителей клеток в тканевой инженерии.

СПАСИБО ЗА ВНИМАНИЕ