молибден

■ Молибден — элемент побочной подгруппы шестой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 42. Обозначается символом Мо (латин. Molybdaenum).

Простое вещество **молибден** (CAS-номер: 7439-98-7) — переходный мета лл светло-серого цвета. Главное применение находит в металлургии.

Нахождение в природе

Содержание в земной коре 3 ·10-4% по массе. В свободном виде молибден не встречается. В земной коре молибден распространён относительно равномерно. Меньше всего содержат молибдена ультраосновные и карбонатные породы $(0.4 - 0.5 \, \Gamma/T)$. Концентрация молибдена в породах повышается по мере увеличения SiO₂. Молибден находится также в морской и речной воде, в золе растений, в углях и нефти. Содержание молибдена в морской воде колеблется от 8,9 до 12,2 мкг/л для разных океанов и акваторий. Общим является то, что воды Молибден в породах находится в следующих формах: молибдатной и сульфидной в виде микроскопических и субмикроскопических выделений, изоморфной и рассеянной (в породообразующих минералах). Молибден обладает большим сходством с серой, чем с

- В поверхностных условиях образуются преимущественно кислородные соединения Mo⁶⁺. В первичных рудах молибденит встречается в ассоциации с вольфрамитом и висмутином, с минералами меди (медно-порфировые руды), а также с галенитом, сфалеритом и урановой смолкой (в низкотемпературных гидротермальных месторождениях). Хотя молибденит считается устойчивым сульфидом по отношению к кислым и щелочным растворителям, в природных условиях при длительном воздействии воды и кислорода воздуха молибденит окисляется и молибден может интенсивно мигрировать с образованием вторичных минералов. Этим можно объяснить повышенные концентрации молибдена в осадочных отложениях углистых и кремнисто-углистых сланцах и углях.
- Известно около 20 минералов молибдена. Важнейшие из них: молибденит MoS₂ (60 % Mo), повеллит CaMoO₄ (48 % Mo), молибдит Fe(MoO₄), nH₂O (60 % Mo)

получение

- Промышленное получение молибдена начинается с обогащения руд флотационным методом. Полученный концентрат обжигают до образования оксида МоО₃:
- 2MoS2+7O2□2MoO3+4SO2
 который подвергают дополнительной очистке. Далее MoO₃ восстанавливают водородом:
- MoO3+3H2□Mo+3H2O
 Полученные заготовки обрабатывают давлением (ковка, прокатка, протяжка).

Физический свойства

Молибден — светло-серый металл с кубической объёмноцентрированной решёткой типа α-Fe (а = 3,14 Å; $\bar{z} = 2;$ пространственная группаІт3т), парамагнитен, шкала Mooca определяет его твердость 4.5 баллами. Механические свойства, как и у большинства металлов, определяются чистотой металла и предшествующей механической и термической обработкой (чем чище металл, тем он мягче). Обладает крайне низким коэффициентом теплового расширения. Молибден является тугоплавким металлом

Химические свойства

При комнатной температуре на воздухе молибден устойчив. Начинает окисляться при 400 °C. Выше 600 °C быстро окисляется до триоксида ${\rm MoO_3}$. Этот оксид получают также окислением дисульфида молибдена ${\rm MoS_2}$ и термолизом молибдата аммония ${\rm (NH_4)_6Mo_7O_{24} \cdot 4H_2O}$.

- Мо образует оксид молибдена (IV) МоО₂ и ряд оксидов, промежуточных между МоО₃ и МоО₂.
- С галогенами Мо образует ряд соединений в разных степенях окисления. При взаимодействии порошка молибдена или MoO_3 с F_2 получают гексафторид молибдена MoF_6 , бесцветную легкокипящую жидкость. Мо (+4 и +5) образует твердые галогениды MoHal_4 и MoHal_5 (Hal = F, Cl, Br). С иодом известен только дийодид молибдена MoI_2 . Молибден образует оксигалогениды: MoOF_4 , MoOCl_4 , MoO_2F_2 , MoO_2Cl_2 , MoO_2Br_2 , MoOBr_3 и другие.
- При нагревании молибдена с серой образуется дисульфид молибдена MoS₂, с селеном диселенид молибдена состава MoSe₂. Известны карбиды молибдена Mo₂C и MoC кристаллические высокоплавкие вещества и силицид молибдена

- Особая группа соединений молибдена молибденовые сини. При действии восстановителей сернистого газа, цинковой пыли, алюминия или других на слабокислые (рH=4) суспензии оксида молибдена образуются ярко-синие вещества переменного состава: Мо₂O₅ ·H₂O, Mo₄O₁₁ ·H₂O и Mo₈O₂₃ ·8H₂O.
- Мо образует молибдаты, соли не выделенных в свободном состоянии слабых молибденовых кислот, хН₂О · уМоО₃ (парамолибдат аммония 3(NH₄)₂O ·7MoO₃ ·zH₂O; CaMoO₄, Fe₂(MoO₄)₃ встречаются в природе). Молибдаты металлов I и III групп содержат тетраэдрические группировки [МоО₄].
- При подкислении водных растворов нормальных молибдатов образуются ионы MoO₃OH⁻, затем ионы полимолибдатов: гепта-, (пара-) Mo₇O₂₆⁶⁻, тетра-(мета-) Mo₄O₁₃²⁻, окта- Mo₈O₂₆⁴⁻ и другие. Безводные полимолибдаты синтезируют спеканием MoO₃ с оксидами металлов.
- Существуют двойные молибдаты, в состав которых входят сразу два катиона, например, М⁺¹М⁺³(МоО₄)₂, М⁺¹₅М⁺³(МоО₄)₄. Оксидные соединения, содержащие молибден в низших степенях окисления молибденовые бронзы, например, красная К_{0,26}МоО₃ и синяя К_{0,28}МоО₃. Эти соединения обладают метаплической проволимостью

Применение

- Молибден используется для легирования сталей, как компонент жаропрочных и коррозионностойких сплавов. Молибденовая проволока (лента) служит для изготовления высокотемпературных печей, вводов электрического тока в лампочках. Соединения молибдена сульфид, оксиды, молибдаты являются катализаторами химических реакций, пигментами красителей, компонентами глазурей. Гексафторид молибдена применяется при нанесении металлического Мо на различные материалы, МоS₂ используется как твердая высокотемпературная смазка. Мо входит в состав микроудобрений. Радиоактивные изотопы⁹³Мо (Т_{1/2} 6,95ч) и ⁹⁹Мо (Т_{1/2} 66ч) изотопные индикаторы.
- Молибден один из немногих легирующих элементов, способных одновременно повысить прочностные, вязкие свойства стали и коррозионную стойкость. Обычно при легировании одновременно с увеличением прочности растет и хрупкость металла. Известны случаи использования молибден
- Молибден-99 используется для получения технеция-99, который используется в медицине при диагностике онкологических и некоторых других заболеваний. Общее мировое производство молибдена-99 составляет около 12 000 Кюри в неделю (из расчёта активности на шестой день), стоимость молибдена-99 46 млн долларов за 1 грамм (470 долларов за 1 Ки).
- Известны случаи использования молибдена при изготовлении в Японии холодного оружия в XI — XIII вв.

- В 2005 году мировые поставки молибдена (в пересчёте на чистый молибден) составили, по данным «Sojitz Alloy Division», 172,2 тыс. тонн (в 2003—144,2 тыс. тонн). Чистый монокристаллический молибден используется для производства зеркал для мощных газодинамических лазеров. Теллурид молибдена является очень хорошим термоэлектрическим материалом для производства термоэлектрогенераторов (термо-э.д.с 780 мкВ/К). Трёхокись молибдена (молибденовый ангидрид) широко применяется в качестве положительного электрода в литиевых источниках тока.
- Молибден применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов и теплоизоляции. Дисилицид молибдена применяется в качестве нагревателей в печах с окислительной атмосферой, работающих до 1800 °C.
- Из молибдена изготовляются крючки-держатели тела накала ламп накаливания, в том числе ламп накаливания общего назначения.

