Рис. 1.1. Начальные стадии растворения смектита при кислотной обработке (составлено по Shaw et al., 2009)

Рис. 1.2. Изменение химического состава бентонита в результате обработки кислотой при 90⁰С (составлено по Vucović et al., 2006)

Рис. 1.3. Рентген-дифрактограмма бентонита до и после обработки кислотой разной концентрации (составлено по Vucović et al., 2006)

Рис. 1.5. Схема процесса интеркаляции и вытеснения адсобированных органических молекул на 1:1 глинистых минералах (составлено по Lagaly et al., 2006)

Рис. 1.6. Способная к формированию сильной водородной связи молекулой пиридина (А) и молекула диметилсульфоксида с сильным дипольным моментом (В)

Рис. 1.7. Различные типы взаимодействий смектитов с органическими молекулами (составлено по Lagaly et al., 2006)

Ионы, используемые для получения органо-глин

Рис. 1.7.а. Расположение алкиламмонийных ионов в межпакетных промежуках смектитов: (a) – монослой, (b) – бимолекулярный слой, (c) – псевдотримолекулярный слой, (d, e) – парафиноподобная упаковка

Рис. 1.8. Влияние величины заряда и длины цепочки на расположение и упаковку алкиламмонийных ионов в межслоевых пространствах смектитов (составлено по Lagaly, 2006)

Рис. 1.9. Расположение и упаковка ионов додециламмония и молекул спиртов в межслоевых пространствах смектита: (a) – расположение молекул спиртов с малым числом атомов C; (b) – бимолекулярная структура с плотной упаковкой алкиламмонийных ионов и молекул и спиртов одинаковой длины; (c) и (d) – наличие вакантных пустот при разной длине алкиламмонийных ионов и молекул спиртов; (e) – уменьшением длины молекул за счет изогнутости (составлено по Lagaly, 2006)

Табл. 1.1. Сорбция четвертичных аминов с разной длиной цепочки на монтмориллоните в Na-и К-формах, в % от добавленного количества (составлено по Zhang et al., 1993)

НТМА – нонилтриметиламмоний (С9), ДТМА – додецилтриметиламмоний (С 12), ГДТМА – гексадецилтриметиламмоний (С19)

Добавлено аминов, % от	Na-монтмориллонит			К-монтмориллонит		
EKO	HTMA	ДТМА	ГДТМА	НТМА	ДТМА	ГДТМА
60	99,8	99,8	99,7	98,1	98,5	99,6
100	87,6	94,3	98,9	73,1	79,1	99,2
200	46,4	56,5	96,2	41,1	47,3	88,8
300	31,5	40,5	74,6	29,7	34,1	60,8

Рис. 1.10. Удельная поверхности, рассчитанная по уравнению БЭТ, и объем порового пространства исходного Naмонтмориллонита и органо-монтмориллонита с разным количеством сорбированного HDTMA (составлено по He at al., 2006)

Рис. 1.11. Схематическое изображение структуры Naмонтмориллонита и органо-глины (составлено по He et al., 2006)

Na-монтмориллонит

Органо-монтмориллонит

Гидролиз и полимеризация соединений

алюминия

 $(AI)^{3+} + H_2O \leftrightarrow (AIOH)^{2+} +$ $((H^+)^{2+} + H_2^{0} \leftrightarrow (AI(OH)_2)^{+} +$ $((AI(OH)_2)^+ + H_2O \leftrightarrow (AI(OH)_3)^0 +$ $((A^+)(OH)_3)^0 + H_2O \leftrightarrow (Al(OH)_4)^- +$

$$xAI^{3+} + yH_2O = AI_(OH)_{(3x - y)^+} + yH^+$$

Ионный

радиусАІ³⁺

равен 0,05 нм

Реакция гидролиза

Общая формула гидроксополимеров AI: [AI, (OH),]^{(3x-y)+}

1 ≤x ≤54 1 ≤y ≤144

AI^{IV}O₄AI^{VI}₁₂(OH)₂₄(H₂O)₁₂₇⁷⁺

Рис. 1.12. Схематическое изображение структуры «Кеггиниона» $AI_{13}O_4(OH)_{24}(H_2O)_{127}^{7+}$ (частицы Al₁₃) (составлено по Bertsch, Parker, 1996)

Рис. 1.13. Лабильный трехслойный глинистый минерал с колоннобразными структурами из Al₁₃ в межпакетном пространстве (составлено по Bergaya et al., 2006)

Табл. 1.2. Базальные межплоскостные расстояния исходного и интеркалированного Alоксополикатионами монтмориллонита, прокаленного при разных температурах после старении системы в течение разных промежутков времени (составлено по Shin et al., 2003), нм

Темпера	Исход-	Интеркалированный				
тура	ный	монтмориллонит после				
прокали	МОНТМО-	старения в течение разных				
вания,	риллони	промежутков времени				
C^0	Т	1 день	4 дня	7 дней		
105	1,42	1,72	1,71	1,71		
400	0,94	1,68	1,71	1,83		
600	0,94	1,59	1,70	1,70		
700	0,95	1,06	1,68	1,74		

Табл. 1.3. Объем порового пространства (общий, микро- и мезопор в мл/г) исходного и интеркалированного Al-оксополикатионами монтмориллонита, прокаленного при разных температурах после старении системы в течение разных промежутков времени, мл/г (составлено по Shin et al., 2003)

Темп. прока- ливания.	Объем порового пространства	Исходн. монтмори ллонит	Интеркалированный монтмориллонит после старения в течение разных промежутков времени		
C^0			1 день	4 дня	7 дней
105	общий	0,14	0,18	0,19	0,19
	микропор (0,6-1нм)	0,00	0,08	0,09	0,09
	мезопор (3-70 нм)	0,14	0,10	0,10	0,10
400	общий	0,13	0,15	0,18	0,18
	микропор	0,01	0,06	0,08	0,08
	мезопор	0,12	0,09	0,10	0,10
760	общий	0,12	0,11	0,15	0,15
	микропор	0,00	0,02	0,04	0,05
	мезопор	0,12	0,09	0,11	0,10

Табл. 1.4. Удельная поверхность (общая, микро- и мезопор) исходного и интеркалированного Al-оксополикатионами монтмориллонита, прокаленного при разных температурах после старении системы в течение разных промежутков времени, м²/г (составлено по Shin et al., 2003)

Темпера- тура прокалив	Поверх- ность	Исходны й монтмор	Интеркалированный монтмориллонит после старения в течение разных промежутков времени		
ания, С ⁰	ния, С ⁰	иллонит	1 день	4 дня	7 дней
105	общая	65,5	268,9	321,6	328,8
	микропор (0,6-1нм)	14,2	199,7	239,4	245,4
	мезопор (3-70 нм)	51,3	69,2	82,2	83,4
400	общая	67,6	223,9	282,9	290,4
	микропор	20,0	163,6	208,7	215,0
	мезопор	47,6	60,3	74,2	75,4
760	общая	33,0	106,5	190,9	210,7
	микропор	4,8	54,4	115,5	133,4
	мезопор	28,2	52,1	75,4	77,3

Табл. 1.5. Значения базальных межплоскостных расстояний ГМИКС, прокаленных при разных температурах и полученных на основе монтмориллонита, исходно насыщенного разными катионами (составлено по Reis, Ardisson, 2003)

Катион	Значения d ₀₀₁ , нм				
	Воздушно-	Прокален	Прокале		
	сухой	при 400 ⁰	н при		
			5500		
Cs	1,93	1,80	1,67		
Ca	1,93	1,84	1,67		
Ba	1,86	1,77	1,67		
Fe	1,93	1,78	1,60		
Cu	1,72	1,40	1,36		
Ce	1,86	1,75	1,68		

Термическая стабильность и другие характеристики Alмодифицированного монтмориллонитов, зависит также от состава катионов, исходно насыщающих минерал. Как видно из табл. 1.5, монтмориллонит, насыщенный Cs, Ca, Ba, Fe, и Ce после прокаливания при 550⁰C имели близкие значения межплоскостного расстояния 1,60-1,68 нм.

Структура, образованная по **Си-монтмориллониту**, оказалась менее термостабильной и имела значение d001, равное 1,36 нм (Reis, Ardisson, 2003). Из всех перечисленных катионов только Си может закрепляться в гексагональных пустотах тетраэдрических сеток, что способствует протеканию реакции дегидроксилации, и, следовательно, сжатию кристаллической решетки.

AI₂(OH)₅CI 2H₂O

Хлоргидрол –

Рис. 1.14. Рентгенограммы ГМИКС, полученных из монтмориллонита и солей Al с разным составом анионов: Al-хлорид (а), Аl-сульфат (b), Аl-нитрат (с), Al-хлоридрол (d) (составлено по **Aouad et.al., 2006)**

Табл. 1.6. Удельная поверхность и объем порового пространства ГМИКС, полученного при взаимодействии монтмориллонита с солями AI с разным составом анионов (составлено по Aouad et al, 2006)

Образец	УП, м ² /г	Объем порового пространства, см ³ /г		
		общий	микропор	мезопор
Исходный монтмориллонит	29	0,077	0,004	0,073
ГМИКС Al-хлоргидрол	289	0,18	0,11	0,07
ГМИКС Al-нитрат	283	0,173	0,120	0,053
ГМИКС Al-сульфат	153	0,118	0,053	0,065
ГМИКС Al-хлорид	140	0,101	0,047	0,054

Рис. 1.16. Схематическое изображение структуры исходного Na-монтмориллонита и модифицированной структуры в виде «карточного домика» (составлено по Yuan et.al., 2006)

Рис. 1.17. ИК-спектры монтмориллонита в Na и Ca-формах до (А, В) и после (C, D, H, I, J, K) взаимодействия с продуктами гидролиза и полимеризации **Fe с разными** мольными отношениями ОН: Fe в исходном растворе

В порах закрепляется некоторое количество NO₃⁻ (полоса поглощения 1384 см⁻) Рис. 1.15. Рентгенограммы монтмориллонита в Na и Ca-формах до (A, B) и после (C, D, E, F, G, H, I, J, K) взаимодействия с продуктами гидролиза и полимеризации Fe с разными мольными отношениями OH:Fe в исходном растворе (составлено по Yuan et al., 2006)

