
ПЕРЕНОС ЭНЕРГИИ

- Переносчики электронов
- Высокоэнергетические фосфаты
- Сопряженные реакции

Термодинамический потенциал переноса групп

Proton Transfer Potential (Acidity)

$$AH \Longrightarrow A^- + H^+$$

 $AH + H_2O \Longrightarrow$
 $A^- + H_3O^+$

$$pK_a = \frac{\Delta G^{\circ}}{2.303 RT}$$

 ΔG° per mole of H^{+} transferred

 H^+

e

Standard Reduction Potential (Electron Transfer Potential)

$$A \Longrightarrow A^+ + e^-$$

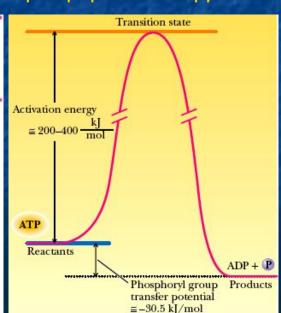
$$A + H^+ \longrightarrow$$

 $A^+ + \frac{1}{2}H_2$

$$\Delta \mathcal{E}_{o} = \frac{-\Delta G^{\circ}}{n\mathcal{F}}$$

 ΔG° per mole of e^{-} transferred Перенос энергии реализуется в сопряженных реакциях

Потенциал переноса фосфорильной группы


Group Transfer Potential (High-Energy Bond)

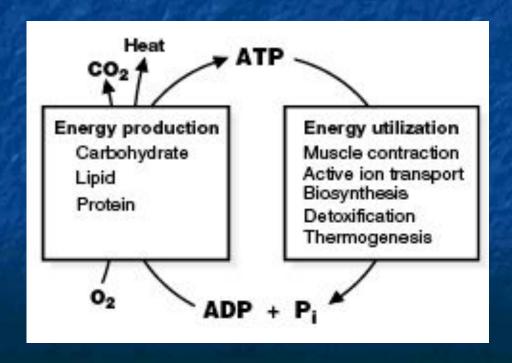
$$A \sim P \Longrightarrow A + P_i$$

 $A \sim PO^{2-} + W = O \Longrightarrow$

$$A \sim PO_4^{2-} + H_2O \Longrightarrow$$

 $A-OH + HPO_4^{2-}$

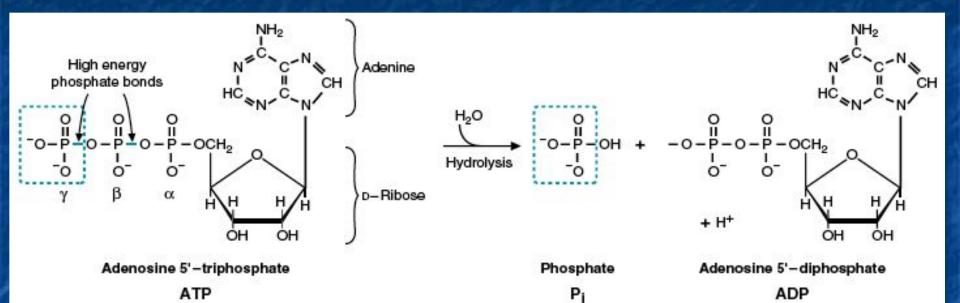
$$\ln K_{eq} = \frac{-\Delta G^{\circ}}{RT}$$

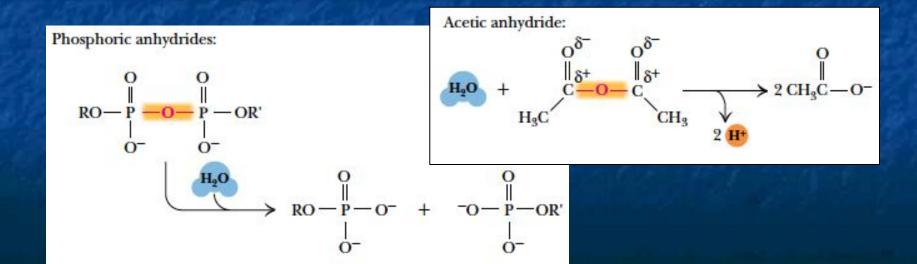

ΔG° per mole of phosphate transferred

~P

2 класса переносчиков

- □ Специальные коферменты (NADH, NADPH, FADH₂, FMN)
- Высокоэнергетические фосфаты: $\Delta G' < -25 \text{ kJ/mol}$)

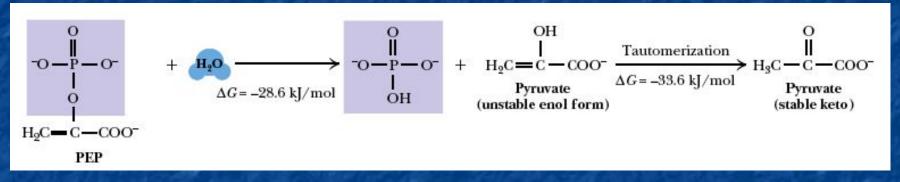


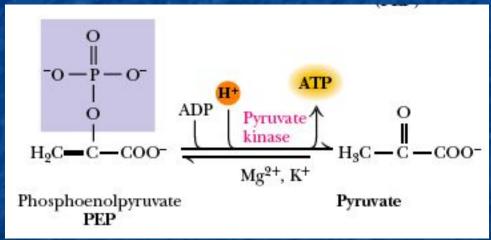

Переносчики электронов

Окисление NAД⁺ и NADP⁺: Перенос двух электронов в виде H⁻:

Окисление FAД и Q: Перенос двух электронов вместе или последовательно в виде (H⁺ + e⁻)

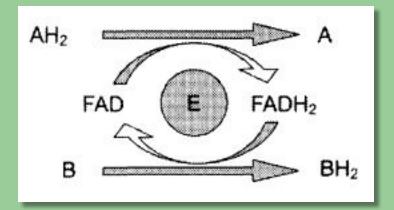
Причины макроэргичности связей

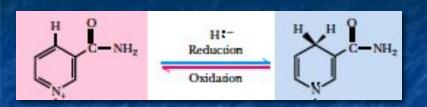

Высокоэнергетические фосфаты > АТФ

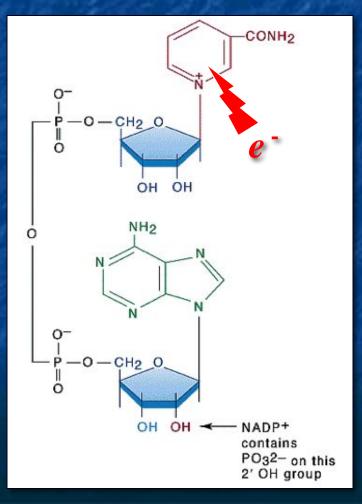

	$\Delta G^{\circ\prime}$ (kJ/mol)	
Phosphoenolpyruvate (pyruvate + P _i)	-62.2	$CH_2 = C - C$ $CH_2 = C$ $CH_2 =$
3',5'-Cyclic adenosine monophosphate (5'-AMP)	-50.4	$O = P \qquad O \qquad OH$
1,3-Bisphosphoglycerate	-49.6	$^{-2}O_3P - O - CH_2 - C - C$
Creatine phosphate	-43.3	CH_3 $-2O_3P$ NH_2 NH_2 NH_2 NH_2
Adenosine-5'-triphosphate (ADP + P _i), excess Mg ²⁺	-30.5	

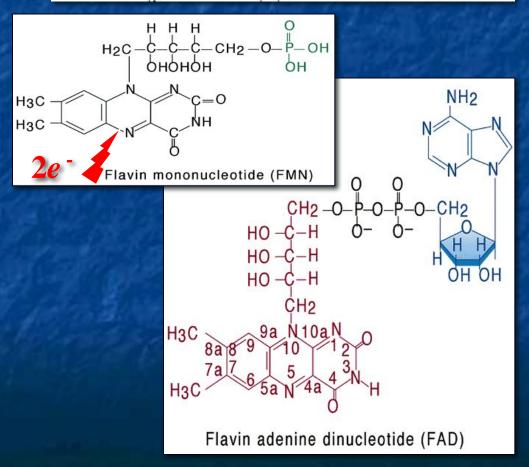
Высокоэнергетические фосфаты ≤ АТФ

$\Delta G^{\circ\prime}$ (kJ/mol)	
-30.5	0 0
-33.6	CH ⁵ OH HN
-31.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-21.0	HOCH ₂ OH OH OH OH OH OH OH OH OH
-13.9	OH H -2O ₃ P - O - CH ₂ H OH OH OH OH OH OH OH OH OH
-9.2	-2O ₃ P - O - CH ₂ - C - CH ₂ OH
-9.2	
	(kJ/mol) -30.5 -33.6 -31.9 -21.0 -13.9 -9.2

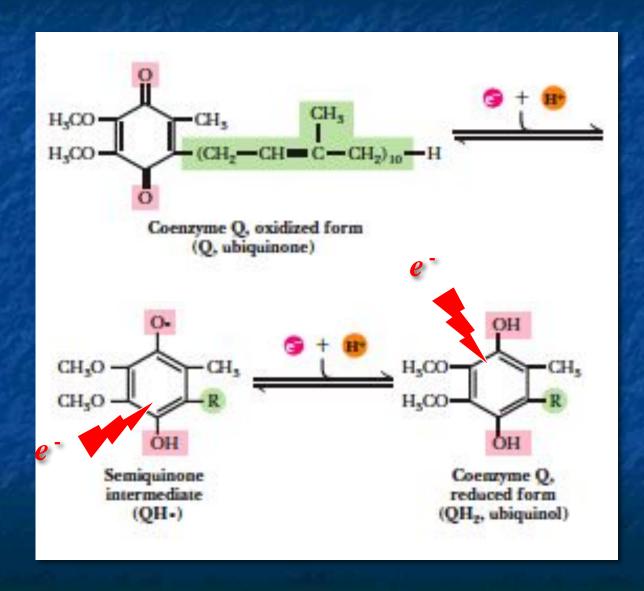

Гидролиз фосфоенолпирувата


Сопряженная реакция - синтез АТФ (субстратное фосфорилирование)


КОФЕРМЕНТЫ



- Ионы металлов
- Переносчики
- Коферменты
- Витамины


Коферменты оксидоредуктаз: НАД(Ф), ФАД, ФМН

Коферменты оксидоредуктаз: убихинон

Коферменты оксидоредуктаз: биоптерин и Н₄ фолят

Tetrahydrofolate (H₄ folate)

Коферменты трансфераз: МТГФ и КоА

3'-Phosphoadenosine diphosphate (3'-P-ADP)

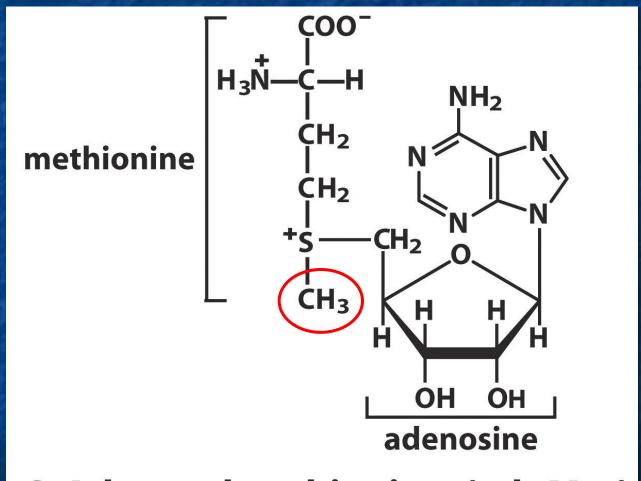
Коферменты трансфераз и лиаз: тиаминпирофосфат

Thiamine pyrophosphate (TPP)

ŊŤ.

трансальдолаза

• транскетолаза

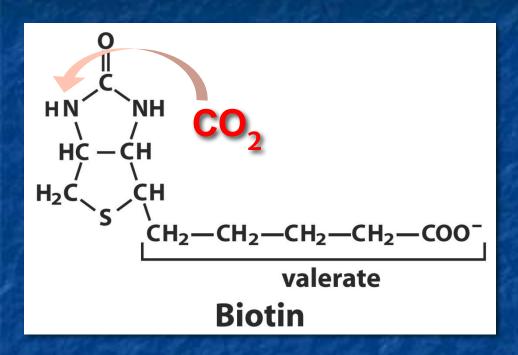

Hydroxyethyl thiamine pyrophosphate

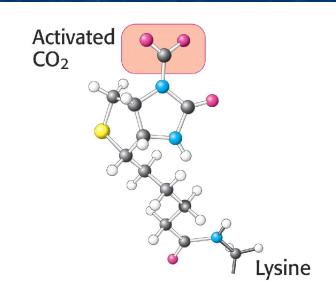
гликолиз пентозный путь

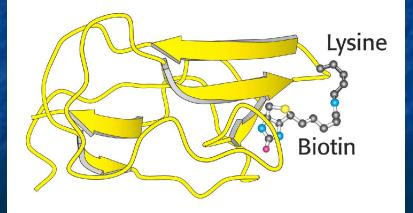
Коферменты трансфераз и лиаз: пиридоксальфосфат

Bond most nearly perpendicular to
$$\pi$$
 orbitals R_3 π orbitals

Коферменты трансфераз: SAM




S-Adenosylmethionine (adoMet)


Коферменты гидролаз:

OTCYTCTBY ЮТ

Коферменты лигаз: биотин и карбоксилирование

ВИТАМИНЫ

САМОСТОЯТЕЛ ЬНО

- Жиро- и водорастворимые
- Группа А
- Группа В
- Группы С, D, E и K
- Группы F, N, P, U

Витамины группы В

Назв	Соединение	В/Ж	Авитаминоз	Гипервитаминоз
B1	Тиамин	В	Берибери, синдром Вернике-Корсакова	Сонливость, мышечная слабость
B2	Рибофлавин	В	Арибофлавиноз (дерматит, стоматит)	-
В3	Никотин(амид)	В	Пеллагра (дерматит, депрессия, диарея)	Поражение печени, экземы, диспепсия и др.
B5	Пантотенат	В	Парестезия (онемение конечностей)	Рвота, диарея, изжога
B6	Пиридокс(ин/аль)	В	Анемия, перифери- ческая нейропатия	Дискоординация, нервное расстройство
B7	Биотин	В	Дерматит, энтерит	-
B9	Фолат	В	Мегалобластная анемия, родовые дефекты	- (сопутствующие)
B12	Цианкобаламин	В	Мегалобластная анемия	Сыпь, сходная с акне

Другие витамины

Назв	Соединение	В/Ж	Авитаминоз	Гипервитаминоз
А	Ретин(ол/аль)	Ж	Куриная слепота, кератозы	Гипервитаминоз А
С	Аскорбиновая к-та	В	Цинга	-
D	Кальциферолы	Ж	Рахит	Гипервитаминоз D
E	Токоферолы	Ж	- (гемолитическая анемия)	-
F	Незаменимые ЖК	В	Нужны большие количества (не вит)	-
K	Хиноны	Ж	Несвертывание крови, кроветочащий диатез	?
0	Карнитин	В	Обмен ЖК в печени	-
S	Салициловая к-та	В	Микроэлемент питания	?
U	S-метилметионин	В	Метаболит (не вит)	-