Нафигуллина Мадиня Минвалеевна учитель высшей категории Номинация: ЕСТЕСТВЕННЫЕ НАУКИ: химия

Название работы:

Гидролиз-урок практикум.

Учитель: Химии и биологии

МОУ "Староибрайкинская средняя школа" Аксубаевского муниципального района Республики Татарстан

Химия.

Урок разработан ведущим учителем химии и биологии МОУ «Староибрайкинской средней школы» Аксубаевского района РТ Нафигуллиной М.М.

<u>Тема:</u> Методика изучения трудноусваимовых учащимся тем из курса химии.»Гидролиз»

<u>Тип урока:</u> Урок совершенствование знаний, умений и навыков.

Цель урока: Развивать у школьников логическое мышление, глубже изучать учебный материал по данной теме, углублять и закреплять знания, полученные при изучении других разделов школьного курса химии, а также из вузовской программы, основываясь на реальных примерах из области гидролиза солей, проанализировать общие принципы решения и оформления гидролитических задач, готовить учащихся к вступительным экзаменам в вузы (к ЕГЭ).

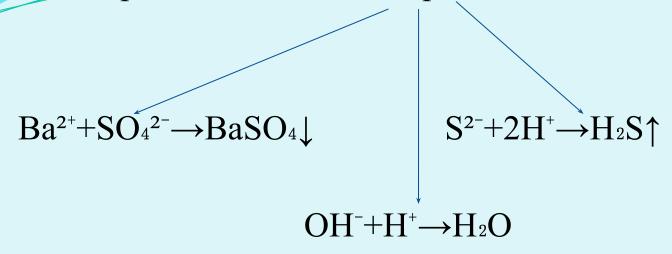
Методы урока: Фронтальный опрос, работа у доски (письменно), работа у мультимидейного экрана (устно), самостоятельная работа при составлении синквейна, групповая работа, работа в парах.

Средства обучения: Таблицы элементов Д.И. Менделеева, таблицы растворимости солей, кислот, оснований в воде, таблица по среде (индикаторов), таблица электролитов и неэлектролитов, карточки с дифференцированными заданиями из ЕГЭ в компьютере, индикаторы и соли для практической работы, презентация на тему «Гидролиз» составленная самостоятельно учениками.

Ход урока:

- I. В начале урока перед решением задач надо вспомнить законы и закономерности гидролиза.
- 1. Сильные электролиты: а)Почти все соли б)Н₂SO₄, HNO₃, HCI, HBr, HJ, HMnO₄, HCIO₃,HCIO₄ в) Основания щелочных и щелочноземельных металлов.
- 2. Слабые электролиты: а)Все органические кислоты (HCOOH,CH₃COOH) б)Н₃РО₄,Н₂СО₃,Н₂SО₃, Н₂S, HNO₂,HCIO,H₂SiO₃. в)Основания металлов:Мg(OH) ₂,Вe(OH)₂,NH₄OH. г)Н₂O.
- 3. <u>Неэлектролиты:</u> Оксиды, гидроксиды, сахар, спирты.

Синквейн


Это стихотворение, которое требует изложение большого объема информации в кратких выражениях, что позволяет описывать и рефлексировать по определенному поводу.

Слово синквейн происходит от французского, означающего пять. Значит синквейн стихотворение, состоящее из пяти строк.

- 1-я строка название синквейна.
- 2-я строка два прилагательных.
 - 3-я строка три глагола.
- 4-я строка фраза на тему синквейна.
 - 5-я строка существительное.

- Гидролиз.
- 2. Ионная, обратимая.
- 3. Гидролизуется, протекает, сообщает.
- 4. Идет между солью и водой.
- 5. Обмен.

Гидролиз – относится к реакциям ионного обмена.

Если реакции протекают в растворе, то уравнения следует записывать в ионном виде, даже если в них участвуют <u>неэлектролиты.</u>

- 1.Оксиды с кислотами: CaO+2HCI \to CaCI₂+H₂O CaO+2H⁺ \to Ca²⁺+H₂O
- 2.Оксиды с щелочами: SO₃+2NaOH→Na₂SO₄+H₂O SO₃+2OH⁻→SO₄²⁻+H₂O
- 3.Металлы с кислотами: $Zn^0+2HI \rightarrow Zn^{2+}CI_2+H_2^0 \uparrow$ $Zn^0+2H^+ \rightarrow Zn^{2+}+H_2^0 \uparrow$

Гидролиз

По катиону Среда кислая Н+

PH<7

 $Zn^{2+}+HOH\leftrightarrow ZnOH^{+}+H^{+}$

ZnICI₂

Zn(OH)₂IHCI

Сл.оснІсиль.кис

 $OH^- < \underline{H}^+$

PH<7

По аниону

Ср. щелочная ОН⁻

PH>7

 CO_3^2 + $HOH \leftrightarrow HCO_3$ +OH

 Na_2ICO_3

 $H_2CO_3 \longleftrightarrow H^+ + HCO^-_3$

NaOHIH₂CO₃ $HCO^{-3} \leftrightarrow H^{+} + CO_{3}^{2^{-}}$

 $OH^->H^+$

PH>7

По катиону, по аниону

Не подвергается

Ср.нейтр.

Ср.слабощел.

NaCI+H₂O↔NaOH+HCI

 $(NH_4)_2CO_3+H_2^{\dagger}O\longleftrightarrow$

 $CH_3COONH_4+H_2O\leftrightarrow$

CH₃COOH+NH₄OH

 $CH_3COO^-+NH_4^++HOH\leftrightarrow$

CH₃COOH+NH₄OH

 $H^+=OH^-$

PH=7

NH₄OH+NH₄HCO₃

 $2NH_4^++CO_3^2^-+HOH\leftrightarrow$

NH₄⁺+OH⁻+NH₄⁺+HCO₃⁻

Степень дисс. NH4OH>

степени дисс. иона НСО3

Ср. нейтраль.

 $H_{+}=OH_{-}$

PH=7

EF3

Задачи по катиону:

232. Укажите вещество, которое гидролизуется по катиону:

1.Ba(NO₃)₂ 2.KCI 3.Na₂S 4.FeCI₃

FeCI ₃+H₂O↔Fe OHCI₂+HCI

 $Fe^{3+}+3CI^-+HOH \leftrightarrow FeOH^{2+}+2CI^-+H^++CI^-$

 $Fe^{3+}+HOH \longleftrightarrow FeOH^{2+}+H^{+}$

(Ответ:4)

<u>242.</u>Укажите, в водном растворе какой соли концентрация ионов водорода больше концентрации гидроксид-ионов:

 $1.K_2CO_3$ $2.Na_2SO_4$ $3.NH_4CI$ 4.NaCI

Концентрация Н⁺ больше концентрации ионов ОН[−] в кислой среде. Кислую среду в результате гидролиза имеют соли, образованные слабым основанием и сильной кислотой. В задании это NH₄CI, потому что— NH₄CI=NH₄⁺+CI

> NH₄⁺+HOH=NH₄OH+H⁺ NH₄CI+H₂O=NH₄OH+HCI (Other:3)

- Гидролиз.
- 2. Кислый, положительный.
- 3. Образует, гидролизует, протекает.
- 4. Между слабым основанием и сильной кислотой.
- По катиону.

ЕГЭ

Задачи по аниону:

233. Укажите вещество, которое гидролизует по аниону:

- 1. KCN
- 2. NaNO₃
- $3. \quad \operatorname{Cr}_{2}(\operatorname{SO}_{4})_{3}$
- 4. CaCI₂

(Ответ:1)

- 1.Гидролиз.
- 2. Щелочной, отрицательный.
- 3.Образует, гидролизует, протекает.
- 4. Между сильным основанием и слабой кислотой.
- 5.По аниону.

ЕГЭ

Не подвергается:

- <u>234.</u> Укажите, какая соль <u>не подвергается</u> гидролизу в водных растворах:
- 1. FeCI₃ 2.KCIO₄ 3.K₂CO₃ 4.Ca(NO₂)₂ KCIO₄+H₂O↔KOH+HCIO₄

K⁺+CIO₄⁻+HOH↔KOH+HCIO₄

(Ответ:2)

- *А25(8)Укажите, какая соль не подвергается гидролизу:
- 1. AI_2S_3 2. Na_3PO_4 3FeCI₃ 4.KJ

- **1.** Гидролиз.
- 2. Нейтральный, также(как у воды).
- 3. Не образует, не участвует, не нарушается.
- 4. Между сильным основанием и сильной кислотой.
- 5. Не подвергается.

ЕГЭ

Задачи по катиону и по аниону:

7-Г. И по катиону и по аниону гидролизуется:

- 1. Бромид калия
- 2. Ацетат натрия
- 3. Хлорид аммония
- 4. Сульфид аммония
- 1.KBr не подвергается
- 3.NH₄CI –по катиону

- 2.CH₃COONa –по аниону
- 4.(NH₄)₂S-по катиону

по аниону(Ответ:4)

- Гидролиз.
- 2. Нейтральная, слабощелочная.
- 3. Связывают, смешивают, образуют(слабощелочную).
- 4. Между слабым основанием и слабой кислотой.
- 5. По катиону и по аниону.

ЕГЭ

По среде:

235. Укажите раствор, который имеет кислую среду:

- 1. Нитрата бария 3. карбоната натрия
- 2. Сульфата калия 4.хлорида аммония
- 1.Ba(NO₃)₂-нейтр. 2.K₂SO₄-нейтр. 3.Na₂CO₃-щел. 4.AICI₃-кислая (Ответ:4)

236. Укажите раствор, который имеет <u>щелочную</u> среду:

- 1. Хлорида калия 3.сульфида натрия
- 2. Сульфата цинка 4.сульфата меди(II)
- 1.KCI-нейтр. 2.ZnSO₄-кисл. 3.Na₂S-щел. 4.CuSO₄-кисл.
- Na₂S+H₂O↔NaOH+NaHS

$$S^{2^{-}}+HOH \leftrightarrow OH^{-}+HS^{-}$$
 (Other:3)

В3(4)Название соли

Среда раствора

Метилат натрия

А)Кислая

2. Хлорид бария

Б)Нейтральная

3. Нитрит калия

В)Щелочная

- **4**. Нитрат ртути(II)
- 1.HCOONа-щел. 2.BaCI₂-нейтр. 3.KNO₂-щел.
- 4.Hg(NO₃)₂-кисл.

- 1 2 3 4
 - ВБВА

<u>*В3(1)</u>Название соли

Среда раствора

1. Ацетат калия

А)Кислая

2. Сульфит натрия

Б)Нейтральная

3. Нитрат лития

В)Щелочная

4. Хлорид цинка

- 1. Гидролиз.
- 2. Кислая, щелочная.
- 3. Сообщает, распределяет, приобретает.
- 4. Между основанием и кислотой.
- 5. Среда.

ЕГЭ

Индикатор:

- <u>A25(3)</u>Лакмус окрасится в синий цвет в растворе:
- 1. C_2H_5OH -неэлектролит 3. Na_3PO_4 -кислая
- ZnCI₂ -щелочная
 4.Na₂SO₄-нейтральная
 - (Ответ:3 Так как лакмус окрасится в синий цвет в щелочной среде)
- <u>A25(4)</u> Метилоранж примет красную окраску:
- 1. NaOH -неэл 2.Na₂CO₃-щел 3.NaF -щел 4.AI₂(SO₄)₃-к
- (Ответ:4 Так как метилоранж примет красную окраску в кислой среде)
- <u>241.</u>Укажите, в каком растворе фенофталин приобретает <u>малиновую</u> окраску:
- 1. Zn(NO₃)₂-к 2.(NH₄)₂SO₄ к 3.Na₂CO₃-щ 4.BaCI₂-нейт
- (Ответ:3 так как фенофталин приобретает малиновую окраску в щелочной среде)

<u>А(37)</u>. Лакмус изменяет окраску на красную в растворах:

А)Хлорида натрия

Г)Сульфата аммония

Б)Хлороводородная кислота Д)Гидроксида натрия

В)Карбоната натрия

Е)Хлорида цинка

А.NaCI-нейтр. Б.HCI-кис В.Na₂CO₃-щел

 Γ .AI₂(SO₄)₃-кис Д.NaOH-щел Е.ZnCI₂-кис

(Ответ:Б.Г.Е. так как лакмус изменяет окраску на красный в кислой среде)

*A25(4)Метилоранж примет красную окраску в растворе:

1.NaOH 2.NaF 3.Na₂CO₃ 4.AI₂(SO₄)₃

EL3

Способность к гидролизу:

238. Какой ион способен участвовать в реакции гидролиза солей?

1. Na⁺ 2.SO₄² 3.Cu²⁺ 4.CI⁻ (Ответ:3 так как здесь только Cu⁺является ионом слабого электролита. Он способен образовывать с ионами воды слабые(малодиссоцирированные) электролиты.)

B 30	(9)	Φ_0	рмула	соли
	$\overline{}$			

1.BaSO₄

2.Na₂CO₃

3.CuSO₄

4.Cr(NO₃)₃

5.(NH₄)₂CO₃ 1-Б. 2- Ж. 3-Е. 4-Γ.

<u>*В3(6)</u>Формула соли

 $1.NH_4NO_2$

2.Na₃PO₄

3.FeCI₃

4.Ba(NO₃)₂

Способность к гидролизу

А)По катиону

Б)По аниону

В)По катиону по аниону

Г)Не подвергается

Способность к гидролизу

А)По катиону

Б)По аниону

В)По катиону по аниону

Г)Гидролизу неподвергается

<u>*В4(10)</u>Формула соли:

A)FeCI₃

Б)АІ₂S₃

B)(CH₃COO)₂Cu

Γ)(CH₃COO)₂Ba

Д)КЈ

<u>*В3(3)</u>Формула соли:

 $1.Cr_2(SO_4)_3$

2.Na₂SO₃

3.BaCI₂

 $4.AI_2S_3$

Способность к гидролизу:

1.По катиону

2.По аниону

3.По катиону по аниону

4.Не подвергается

Способность к гидролизу:

А)По катиону

Б)По аниону

В)По катиону по аниону

Г)Гидролизу неподвергается

EF3

239.Укажите формулу пропущенного вещества в уравнениях реакции гидролиза: Na₂CO₃+H₂O↔... +NaOH (Пропущенным веществом является: NaHCO₃)

240. Укажите формулу <u>пропущенного вещества</u> в уравнениях реакции гидролиза: FeCI₃+H₂O↔…+HCI (Пропущенным веществом является:FeOHCI₂.)

В3(2)Формула соли: Уравнение гидролиза:

 $1.Na_2SiO_3$ A) $Na^++H_2O \leftrightarrow NaOH+H^+$

2.AI(NO₃)₃ Б)AI³⁺+ $H_2O \leftrightarrow AIOH^{2+}+H^+$

3.CH₃COONa B)NH₄⁺+H₂O \leftrightarrow NH₃+H₃O⁺

4.NH₄NO₃ Γ)CH₃COO⁻+H₂O \leftrightarrow CH₃COOH+H⁺ \uparrow

Д)CH₃COO⁻+H₂O↔CH₃COOH+OH⁻

2 3 4 E)CH₃COONa+H₂O \leftrightarrow CH₃COOH+Na⁺+OH⁻

 $\mathcal{K})NO_3^-+H_2O\leftrightarrow HNO_3+OH^-$

3)SiO₃²⁻+H₂O \leftrightarrow HSiO₃⁻+OH⁻

*B52

 $1.ZnSO_4$ A)CH₃COO⁻+H₂O↔CH₃COOH+OH⁻

 $2.K_2SO_3$ Б) $NH_4^++H_2O\leftrightarrow NH_3\times H_2O+H^+$

3.CH₃COOK B) $Zn^{2+}+H_2O\leftrightarrow ZnOH^++H^+$

4.NH₄CI Γ)SO₃²+H₂O \leftrightarrow HSO₃+OH-

Д) $Zn^{2+}+2H_2O\leftrightarrow Zn(OH)_2+2H^+$

<u>243.</u>Отметьте соли, которые <u>необратимо</u> гидролизуются:

- 1.ZnCI₂ и KNO₃
- 2.Cr₂(CO₃)₃ и NaH
- 3.CaCO3 и MgCO3
- 4. Na₂CO₃ и NaCI (Из предложенных солей только Cr₂(CO₃)₃ и NaH гидролизуется необратимо. Соль Cr₂(CO₃)₃ образована слабым основанием и слабой кислотой. Гидролиз идет по катиону по аниону, сопроваждается выделением осадка и газа. Вывод из зоны реакции продуктов приводит к полному гидролизу соли. Ответ:2

Подводим итоги урока