Стекло

Содержание:

- Виды стекол
- Физические свойства
- Классификация по химическому составу
- Применение
- Изделия из стекла

Виды стекол

В зависимости от основного используемого стеклообразующего вещества, стекла бывают оксидными фторидными, сульфидными и т. д. Базовый метод получения силикатного стекла заключается в плавлении смеси кварцевого песка (SiO_2), соды (Na_2CO_3) и извести (CaO). В результате получается химический комплекс с составом $Na_2O^*CaO^*6SiO_2$.

Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты (обычно кварцит, горный хрусталь), его химическая формула — SiO₂. Кварцевое стекло может быть также природного происхождения, образующееся при попадании молнии в залежи кварцевого песка.

Оптическое стекло — применяют для изготовления линз, призм, кювет и др.

Химико-лабораторное стекло — стекло, обладающее высокой химической и термической устойчивостью.

физические свойства

Плотность обычных стекол колеблется в приделах 2500-2600 кг/м3

Теердость стекла зависит от химического состава. Стекла имеют различную твердость в пределах 4 000-10 000МПа. Наиболее твердым является кварцевое стекло, с увеличением содержания щелочных оксидов твердость стекол снижается.

Хрупкость. Поскольку хрупкость четче всего проявляется при ударе, её характеризуют прочностью на удар. Прочность стекла на удар зависит от удельной вязкости.

Теплопроводность. Наибольшую теплопроводность имеют кварцевые стекла. Обычное оконное стекло имеет 0,97Вт/(м . К). С повышением температуры теплопроводность увеличивается, теплопроводность зависит от химического состава стекла.

Высокая прозрачность оксидных стекол сделала их незаменимыми для остекления зданий, зеркал и оптических приборов. Теоретически даже идеальное, не поглощающее свет стекло не может пропускать света более 92%.

Общая классификация по химическому составу.

Неорганические стекла подразделяются на несколько типов: элементарные, оксидные, галогенидные, халькогенидные и смешанные.

1)Элементарные (одноатомные) стекла.

Элементарными называются стекла, состоящие из атомов одного элемента. В стеклоподобном состоянии можно получить серу, селен, мышьяк, фосфор. Имеются сведения о возможности остеклования теллура и кислорода. При охлаждении -11оС дает каучукоподобный прозрачный продукт, нерастворимый в сероуглероде.

2)Оксидные стекла.

При определеии класса учитывается природа стеклообразующего оксида, входящего в состав стекла оксид бора, оксид кремния, оксид фосфора. Многие оксиды переходят в состояние стекла лишь в условиях скоростного охлаждения оксид мышьяка, оксид сурьмы, оксид ванадия, либо сами по себе не стеклуются оксид алюминия, оксид вольфрама, однако в комбинациях стеклообразующие свойства резко усиливаются.

3) Силикатные стекла.

Главнейшее значение в практике принадлежит классу силикатных стекол. С ними не могут сравниться по распространенности в быту и в технике никакие другие классы стекол. Решающие преимущества силикатных стекол обусловлены их дешевизной, экономической доступностью, высокой химической устойчивостью в наиболее распространенных химических реагентах и газовых средах, высокой твердостью, сравнительной простотой промышленного производства.

4) Боратные стекла.

Стеклообразный борный ангидрит легко получается путем простого плавления борной кислоты при 1200-1300оС. Благодаря отличным электроизоляционным качествам и сравнительной легкоплавкости боратные стекла широко применяются в электротехнике. Некоторые боратные стекла представляют интерес для оптотехники.

Применение

Стекло органическое - Применяется как листовое стекло в авиа- и машиностроении, для изготовления бытовых изделий, средств защиты в лабораториях, строительстве и архитектуре, приборостроении, остекления парников, куполов, окон, в медицине -протезы, линзы в оптике, труб в пищевой промышленности и др.

Кварцевое стекло - Применяют для изготовления лабораторной посуды, оптических приборов, изоляционных материалов, ртутных ламп, применяемых в медицине и др.

Стекло растворимое - Применяют для изготовления кислотоупорных цементов и бетонов, для пропитки тканей, изготовления огнезащитных красок, силика-геля, для укрепления слабых грунтов и др.

Стекловолокно - искусственное волокно широко применяется в химической промышленности для фильтрации горячих кислых и щелочных растворов, очистки горячего воздуха и газов; матариалы из стекловолокна применяются в строительстве и при коррозионно-стойких трубопроводов, при изготовлении электроизоляции и др.

KOHCU.

Презентация Красиковой Ольги 9 «В»