

A squad preparing to decontaminate a gas shell hole, 4 December 1918.

Виды СДЯВ по клинической картине поражения:

- Вещества с преимущественно удушающими свойствами.
 - с выраженным прижигающим действием (хлор, трихлористый фосфор);
 - о со слабым прижигающим действием (фосген, хлорпикрин, хлорид серы)
- Вещества преимущественно общеядовитого действия: оксид углерода, синильная кислота, этиленхлорид и др.
- з. Вещества*,* обладающие удушающим и общеядовитым действием.
 - 🛘 с выраженным прижигающим действием (акрилонитрил);
 - о со слабым прижигающим действием (оксиды азота, сернистый ангидрид)
- 4. Нейротропные яды (вещества, действующие на проведение и передачу нервного импульса, нарушающие действия центральной и периферической нервных систем): фосфорорганические соединения, сероуглерод
- 5. Вещества, обладающие удушающим и нейротропным действием (аммиак)
- метаболические яды **Токсичные химические вещества цитотоксического действия**

Актуальность

необходимость знания клиники, диагностики, терапии поражений химическими соединениями этой группы

Токсиканты, относящиеся к группе отравляющих и высокотоксичных веществ цитотоксического действия, не только имеются на вооружении ряда армий в качестве боевых отравляющих веществ, но также широко используются в химическом производстве, фармацевтической промышленности, сельском хозяйстве

Отравления возможны не только в военный период, но также при техногенных и экологических катастрофах, диверсиях, террористических актах, в быту

Аварийно химически опасное вещество (AXOB)

- это опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в поражающих живой организм концентрациях (токсодозах) (ГОСТ Р 22.9.05-95)
- это сравнительно новое понятие, присвоенное группе опасных химических веществ, которые на протяжении свыше трех десятилетий в гражданской обороне назывались сильнодействующими ядовитыми веществами (СДЯВ)
 Пути воздействия СДЯВ на организм человека:
 - ттути воздействия СД/то на организм ч
 - ✓ с пищей и водой (пероральный);
 - ✓через кожу и слизистые оболочки (кожно-резорбтивный);
 - ✓при вдыхании (ингаляционный).

 Цитотоксическим называется повреждающее действие веществ на организм путем формирования глубоких структурных и функциональных изменений в клетках, приводящих к их гибели

В основе лежит прямое, или опосредованное поражение внутриклеточных структур:

- генетического аппарата клеток
- □ клеточных мембран
- □ процессов синтеза белка
- □ других видов пластического обмена

Наиболее токсичные цитотоксиканты

1. Металлы:

- 🛘 МЫШЬЯК
- 🗆 ртуть и др.

2. Элементорганические соединения:

- сероорганические соединения (галогенированные тиоэфиры: сернистый иприт)
- азоторганичесике соединения (галогенированные алифатические амины и некоторые аминосоединения жирного ряда: азотистый иприт, этиленимин)
- мышьякорганические соединения (галогенированные алифатические арсины: люизит)
- органические окиси и перекиси (этиленоксид) и др.

3. Галогенированные полициклические ароматические углеводороды:

- галогенированные диоксины
- 🛾 🛾 галогенированные бензофураны
- 🛾 галогенированные бифенилы и др.

4. Сложные гетероциклические соединения:

- 🛚 афлатоксины
- трихотеценовые микотоксины
- аманитин м др.

5. Белковые токсины

🛛 – рицин и др.

Аварийно химически опасные вещества из группы цитотоксикантов

- □ боевые отравляющие вещества кожно-нарывного действия *(иприт, азотистый иприт, люизит)*
- некоторые промышленные агенты (соединения мышьяка, ртути и т.д.)
- фитотоксиканты и пестициды, и их токсичные примеси (диоксин и диоксиноподобные соединения)

Токсичные химические вещества цитотоксического действия

- 1. Токсичные модификаторы пластического обмена галогенированные диоксины, бифенилы
- 2. Ингибиторы синтеза белка и клеточного деление
- образующие аддукты нуклеиновых кислот сернистый иприт, азотистый иприт
- не образующие аддукты нуклеиновых кислот рицин
- **3. Тиоловые яды** мышьяк, люизит

Общим в действии веществ этой группы на организм является:

- медленное, постепенное развития острой интоксикации(продолжительный скрытый период, постепенное развитие токсического процесса);
- □ изменения со стороны всех органов и тканей (как на месте аппликации, так и после резорбции),
- основные формы нарушений со стороны органов и систем, вовлеченных в токсический процесс:
- 1. воспалительно-некротические изменения,
- 2. угнетение процессов клеточного деления,
- з. глубокие функциональные расстройства внутренних органов

Токсичные химические вещества цитотоксического действия

- 1. Токсичные модификаторы пластического обмена галогенированные диоксины, бифенилы
- 2. Ингибиторы синтеза белка и клеточного деление
- □ образующие аддукты нуклеиновых кислот сернистый иприт, азотистый иприт
- не образующие аддукты нуклеиновых кислот рицин
- **3. Тиоловые яды** мышьяк, люизит

Токсичные модификаторы пластического обмена

Наиболее опасными, с позиций военной токсикологии веществами из группы полигалогенированных ароматических углеводородов, являются:

- □ галогенированные диоксины
- □ дибензофураны
- 🗆 бифенилы

Характеристика:

- □ высокая токсичность,
- □ стойкость в окружающей среде,
- □ способность к длительной материальной кумуляции,
- особенности развивающегося токсического процесса

Диоксины

- □ Разнообразие химической структуры диоксинов определяется типом галогена (хлор или бром), числом его атомов в молекуле и возможностью изомерии (положение галогенов в молекуле). В настоящее время насчитывается несколько десятков семейств этих ядов, а общее число соединений превышает 1 тысячу
- 2,3,7,8-тетрахлордибензо-пара-диоксин (ТХДД "диоксин") самый токсичный представитель группы

Физико-химические свойства. Токсичность

- □ 2,3,7,8-ТХДД кристаллическое вещество с молекулярной массой около 320 дальтон, температура кипения 305° С.
- Хорошо растворяется в органических растворителях, особенно в о-хлорбензоле. В воде не растворим. Отличается высокой липофильностью. Способность к испарению крайне низка
- Вещество отличается необычайной стойкостью, накапливается в объектах внешней среды, организмах животных, передается по пищевым цепям
- Во внешней среде диоксины абсорбируются на органических, пылевых и аэрозольных частицах, разносятся воздушными потоками, поступают в водные экосистемы
- В донных отложениях стоячих водоемов яд может сохраняться десятки лет. В почве возможна медленная микробная деградация диоксина.
- □ Период полуэлиминации из почвы составляет 1 1,5 года (до 10 лет), что определяется конкретными климато-географическими условиями и характером почвы.
- □ Яд отнесен к числу "суперэкотоксикантов".

Токсикокинетика

Основные пути поступления диоксинов

- □ с зараженной пищей
- ингаляционно в форме аэрозоля

После поступления в кровь вещества распределяются в органах и тканях. Значительная часть токсикантов кумулируется в тканях богатых липидами и прежде всего в жировой. Даже через 15 лет после окончания химической войны содержание ТХДД в жировой ткани жителей ряда районов Вьетнама было в 3-4 раза выше, чем у жителей Европы и США

Вещество медленно метаболизирует в организме, в основном в печени и почках, при участии цитохром-Р450-зависимых оксидаз.

Полихлорированные бифенилы (ПХБ)

- это класс синтетических хлорсодержащих полициклических соединений
- ПХБ при остром воздействии обладают сравнительно низкой токсичностью
- □ ПХБ широко использовались при производстве электрооборудования, в частности трансформаторов и усилителей, а также в качестве наполнителей при производстве красителей и пестицидов, смазочных материалов для турбин, для производства гидравлических систем, текстиля, бумаги, флуоресцентных ламп, телевизионных приемников и др.
- □ В 1979 году производство веществ в США было запрещено.

Токсикокинетика

В организм полихлорированные бифенилы могут проникать

- □ через кожу
- □ легкие
- □ желудочно-кишечный тракт
- □ быстро накапливаются в печени и мышцах, затем, перераспредляются в жировую ткань. Коэффициент распределения веществ в мозге : печени : жире составляет в среднем - 1 : 3,5 : 81.
- □ ПХБ метаболизируются в печени
- основные пути выведения: с желчью в содержимое кишечника и через почки с мочой
- как и диоксины ПХБ являются индукторами Р-450-зависимых оксидаз смешанной функции в печени, легких и тонком кишечнике;

Основные проявления острой интоксикации

- Характерна большая отсроченность в развитии токсических эффектов диоксина
- □ смертельное поражение
- симпотомы общей интоксикации (истощение, анорексия, общее угнетение, адинамия, эозинопения, лимфопения, лейкоцитоз с нейтрофилезом).
- симптомы органоспецифической патологии: поражение печени, тканей иммунокомпетентных систем, проявления панцитопенического синдрома и др.
- отеки (сначала вокруг глаз, затем лицо, шея, туловище. Характерны тяжелейшие терминальные отеки, в основном подкожной локализации, однако жидкость обнаруживается также в грудной, брюшной полостях, полости перикарда

Основные проявления острои интоксикации

(несмертельные поражения)

- трансформация клеток сальных желез с формированием "хлоракне"
- чешуйчатая метаплазия кератиноцитов (гиперекератоз кожи стоп и ладоней, гипоплазия и деформация ногтей, выпадают волосы и ресницы, развивается стойкий блефарит)
- □ поражение печени: жировое перерождение, очаговый центрлобулярный некроз, пролиферация эпителия желчных путей и желчного пузыря
- □ иммунотоксическое действие диоксина («химический СПИД»)
- нарушения со стороны центральной нервной системы депрессия, сонливость, головная боль, пробелы в памяти, возможны суицидные попытки
- □ эмбриотоксическое, тератогенное и канцерогенное действие

- □ Взрыв 11 июля 1976 года в итальянском городе Севезо резкое увеличение врожденных аномалий у новорожденных
- □ вьетнам и потомство американских ветеранов войны во Вьетнаме изза воздействия дефолианта Agent Orange, который распылялся над тропическими лесами для уничтожения растительности

Особую известность слово «диоксины» приобрело после осенней истории 2004 года с выборами на Украине*

????

Механизм токсического действия

- чрезвычайно высокая активность, как индукторов ферментов гладкого эндоплазматического ретикулума печени, почек, легких, кожи и других органов (микросомальных ферментов), участвующих в метаболизме чужеродных соединений и некоторых эндогенных веществ
- индукция активности предполагает синтез дополнительного количества того или иного энзима (белка) в органах и тканях de novo (феномен индукции реализуется на уровне транскрипции генетической информации клетки)
- стойкая активация диоксином биопревращения некоторых ксенобиотиков, поступающих в организм с водой, продовольствием, вдыхаемым воздухом, может приводит к усиленному образованию реактивных промежуточных метаболитов и вторичному поражению ими различных органов и тканей
- модификация обмена стероидов (андрогенов, эстрогенов, анаболических стероидов, кортикосероидов, желчных кислот), порфиринов (простетические группы гемопротеинов, цитохромы, витамин В₁₂ и т.д.), каротиноидов (витамины группы "A"), сопровождается выраженным нарушением обмена веществ

Мероприятия медицинской защиты

Спеи	иальные	санита	JSUS-OHO	іеническ	ие меро	приятия:
	, a as i b i b i c	Janana	prio cace	ioria roon	ac mope	ιρανιιιανι.

- использование индивидуальных технических средств защиты (средства защиты кожи; средства защиты органов дыхания) в зоне химического заражения;
- участие медицинской службы в проведении химической разведки в районе расположения войск, экспертиза воды и продовольствия на зараженность АОХВ;
- запрет на использование воды и продовольствия из непроверенных источников;
- обучение личного состава правилам поведения на зараженной местности.

Специальные профилактические медицинские мероприятия:

 проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.

Специальные лечебные мероприятия:

- своевременное выявление пораженных;
- подготовка и проведение эвакуации

Медицинские средства защиты

 организация тщательного наблюдения за состоянием здоровья всего личного состава подразделения

выявление пораженных с признаками заболевания

- □ Специфические антагонисты (антидоты) токсического действия полигалогенированных
- ароматических углеводородов отсутствуют

Токсичные химические вещества цитотоксического действия

- 1. Токсичные модификаторы пластического обмена галогенированные диоксины, бифенилы
- 2. Ингибиторы синтеза белка и клеточного деление
- образующие аддукты нуклеиновых кислот сернистый иприт, азотистый иприт
- не образующие аддукты нуклеиновых кислот рицин
- 3. Тиоловые яды мышьяк, люизит

Ингибиторы синтеза белка и клеточного деления

две группы

- □ первой группа взаимодействуют с нуклеиновыми кислотами ядра клетки (образуют аддукты), повреждая ее генетический код и нарушая механизмы репликации, поражение сопровождается повреждением преимущественно делящихся клеток, нарушением пролиферации клеточных элементов
- вторая группа действуют на этапах транскрипции и трансляции генетической информации, основным видом нарушения является угнетение синтеза белка наиболее чувствительны органы с высокой интенсивностью пластического обмена

деления, образующие аддукты ДНК и РНК

- К числу веществ рассматриваемой группы относятся яды, образующие при интоксикациях прочные ковалентные связи с азотистыми основаниями нуклеиновых кислот, друное название алкилирующие агенты (фрагменты молекулы яда, представляющие собой алкильную группу):
- 🛛 сернистый иприт
- азотистый иприт и их аналоги
- □ Помимо нуклеиновых кислот способны взаимодействовать с белками, пептидами и молекулами иного строения (механизм их токсического действия не ограничиваются повреждением только генетического аппарата клеток)

Иприты

- Впервые синтезирован в 1822 г. Депре
- В соответствии с Конвенцией о запрещении химического оружия (1993) запасы сернистого и азотистого иприта, странами, имеющими вещества на снабжении армий, должны быть уничтожены
- Опасность поражения людей этими соединениями или их аналогами сохраняется на основе хлорэтиламинов созданы высокоэффективные цитостатики лекарственные препараты, применяемые для лечения опухолей (циклофосфамид, мехлорэтамин, хлорамбуцил, мелфалан) и других форм патологии. Многочисленные серу-, азот- и кислородсодержащие органические соединения с близким механизмом токсического действия широко используют в промышленности (этиленимин, этиленоксид и т.д. Широкое применение алкилирующих агентов в хозяйственной деятельности, их доступность, делают возможным применение веществ с террористическими целями

История применения иприта

- □ Впервые иприт был применён Германией 12 июля 1917 года против англо-французских войск, которые были обстреляны минами, содержавшими маслянистую жидкость, у бельгийского города Ипр (откуда и произошло название этого вещества).
- □ Синьцзянское восстание в 1934
- □ Итало-эфиопская война 1935—1936 годов.
- Во время Второй мировой войны иприт применялся только один раз Польшей, при этом погибли два немецких солдата, а двенадцать получили поражения разной степени тяжести.

Физико-химические свойства. Токсичность

- Сернистый иприт тяжелая маслянистая жидкость. В чистом виде бесцветная, почти без запаха. В неочищенном виде темного цвета (в качестве примесей содержит 17-18% сульфидов). При низких концентрациях обладает запахом, напоминающим запах горчицы или чеснока (отсюда еще одно название ОВ "горчичный газ"). В воде плохо растворим. Хорошо растворяется в органических растворителях. Растворяется в других ОВ и сам растворяет их. Легко впитывается в пористые материалы, резину, не теряя при этом токсичности.
- Азотистый иприт маслянистая, слегка темная, или бесцветная жидкость легко растворяемая в органических растворителях, но практически не растворяющаяся в воде.
- Давление насыщенного пара ипритов незначительное; возрастает с увеличением температуры. Поэтому в обычных условиях иприты испаряются медленно, создавая при заражении местности стойкий очаг.
 Основное боевое состояние сернистого иприта пары и капли.
- Растворимость токсикантов крайне низка, находящиеся в воде ОВ, долго сохраняет свою токсичность.

Токсикокинетика

- ингаляционно (в форме паров и аэрозоля)
- через неповрежденную кожу, раневую и ожоговую поверхности (в капельно-жидкой форме)
- 🛮 через рот с зараженной водой и продовольствием
- Контакт с веществами не сопровождается неприятными ощущениями (немой контакт)
- □ После поступления в кровь вещества быстро распределяются в организме, легко преодолевая гистогематические барьеры, проникают в клетки.
 Метаболизм веществ проходит с большой скоростью, при участии тканевых микросомальных ферментов, в процессе метаболизма ипритов образуются токсичные промежуточные продукты (сульфоний, иммоний катионы и др.)

Основные проявления интоксикации

- местное действие развитие симптомов воспаления покровных тканей (гиперемия, отек, боль и нарушение функции)
- резорбтивное действие угнетение кроветворения, центральной нервной системы, нарушение кровообращения, пищеварения, всех видов обмена веществ, терморегуляции и т.д.
- токсический процесс развивается медленно, после скрытого периода, продолжительность которого – от часа до нескольких суток.
- выражено кумулятивное действие (возможна сенсибилизация)
- наиболее опасное ингаляционное поражение парами или аэрозолем иприта

Поражение органов дыхания

- 1. Скрытый период (от 2-6 ч до 12 ч)
- 2. Признаки воспаления дыхательных путей:
 - □ легкая токсический ринит, фарингит , ларингит 10-12дней
 - □ средней степени + трахеобронхит, t до 39 °C 30-40 дней
 - тяжелое бронхопневмония + гангрена легких
- 3. Последствия:
 - хронические воспалительные процессы в дыхательных путях (преимущественно гипертрофического типа), рецидивирующие бронхопневмонии, бронхоэктатическая болезнь, эмфизема легких
 - □ предрасположенность к туберкулезу.
- увеличивает вероятность заболевание раком легких

Поражение глаз

Глаза наиболее чувствительны к действию иприта и могут рассматриваться как биологический индикатор ипритного поражения

- □ Симптомы поражения глаз появляются через 0,5 3 часа
 - Легкая степень: гиперемия конъюнктивы, отечность конъюнктивы (неосложнённый конъюнктивит);
 - □ Средняя степень: гиперемия конъюнктивы, кожи век, отечность конъюнктивы, кожи век (осложненный конъюнктивит);
 - Тяжелая степень: кератоконъюнктивит, изъязвление и помутнение роговицы, ирит, иридоциклит, панофтальмит

Поражение кожи

- возникают при действии иприта в парообразном или капельножидком состоянии
- □ появляются после скрытого периода, продолжительность которого меняется от 5 до 15 часов в случае действия парообразного иприта, до 2 4 часов при попадании жидкого
- □ ряд сменяющих друг друга стадий:

месте пузыря)

- 1. эритематозная (появление разлитой эритемы, не исчезающей при надавливании)
- 2. <mark>буллезная</mark> (поя ление мелких пузырей, сливающихся затем в один)
- з. язвенно-некротическая (появление изъязвлений на

Поражение желудочно-кишечного тракта

- при попадании иприта внутрь с зараженной водой и пищей, при заглатывании зараженного ипритом содержимого ротовой полости,
- □ при тяжелых формах интоксикации, возникающих при любом способе поступления ОВ в организм (ингаляционно, через кожу и т.д.)
- □ Скрытый период действия яда составляет 1 3 часа.
- К концу периода появляется саливация, тошнота, рвота, боль в животе
- □ Пораженный становится вялым, аппетит отсутствует, отмечается расстройство стула
- Легкая форма выздоровление наступает в течение недели
- Тяжелая форма + признаки, обусловленные некротическим изменением слизистой оболочки рта, глотки, кишечника (болезненность по всему животу, частые поносы жидкими дегтеобразными массами)
- Последствия рубцовые изменения стенки пищевода и желудка, стенозирование пищевода

Резорбтивное действие

- система крови угнетение ростков кроветворения с 4-5 дня (агранулоцитоз)
- нервная система общая вялость пораженных, жалобы на головную боль, головокружение, сонливость, апатия, парезы, параличи, невриты, стойкое нарушение памяти, затруднение мышления, расстройство сна и т.д. При летальных поражениях психомоторное возбуждение, судорожное действие ядов.
- □ сердечно-сосудистая система снижение АД (вазодилятация). При тяжелых интоксикациях брадикардия, аритмия, сменяющаяся тахикардией
- обмен веществ постипритная кахексия синтетические процессы замедляются, увеличивается выделение продуктов распада белка, в моче повышается содержание азота, креатинина, фосфатов

Канцерогенез

Мутагенность

Канцерогеннос ть

ИПРИТ

Тератогенност ь

Токсичность

Особенности клинического течения поражений азотистым ипритом

- Оказывает раздражающее действие на органы дыхания, глаза и меньше
 на кожу
- Обладает резко выраженным общетоксическим действием,
 характеризующимся бурным судорожным синдромом с расстройством дыхания и сердечно-сосудистой деятельности, кахексией, резкими гематологическими сдвигами (лейкопения с лимфоцитопенией)
- □ Пары азотистого иприта на кожу не действуют. При попадании капельно-жидкого вещества изменения сходны с таковыми при действии сернистого иприта, но выражены слабее, для дерматитов характерны фолликулит и появление папулезной эритемы, небольших пузырей, течение язв более гладкое (2-4 недели)
- Для поражения органов дыхания и глаз характерно более легкое течение и более быстрое заживление
- □ Развиваются выраженные трофические нарушения до степени кахексии

Механизм токсического действия

- нарушают механизмы проведения нервных импульсов в синапсах (главным образом холинэргических)
- вызывают индукцию и повышать активность NOсинтетазы
- цитотоксическое действие ипритов взаимодействуют с нуклеофильными группами молекул клеточных мембран и внутриклеточных структур, вызывая их алкилирование
- мишени белки и нуклеиновые кислоты,
 повреждающее действие на дезоксирибонуклеиновые кислоты (ДНК) генотоксиканты
- инициация ряда патохимических процессов нарушается обмен цитокинов ("медиаторов"
- воспалительной реакции)-

Мероприятия медицинской защиты

Специальные санитарно-гигиенические мероприятия

- использование индивидуальных технических средств защиты (средства защиты кожи; средства защиты органов дыхания)
- участие медицинской службы в проведении химической разведки в районе расположения войск, проведение экспертизы воды и продовольствия на зараженность АОХВ
- запрет на использование воды и продовольствия из непроверенных источников.
- обучение личного состава правилам поведения на зараженной местности

Специальные профилактические медицинские мероприятия:

- проведение частичной санитарной обработки (использование ИПП);
- проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации

Специальные лечебные мероприятия:

- своевременное выявление пораженных
- оказания первой, доврачебной и первой врачебной (элементы) помощи пострадавшим
 - подготовка и проведение эвакуации

Медицинские средства защиты и порядок их использования

- □ Для дегазации иприта на коже человека рекомендуется
 применение 2 5% водных растворов хлораминов (монохлорамин
 Б и дихлорамин Б) или 5 15% спиртовых растворов этих веществ
- Для обработки слизистых глаз применяют 1 2% растворы двууглекислой соды или борной кислоты, 0,25 - 0,5% водные растворы монохлорамина, 0,02% раствор марганцевокислого калия
- Для обработки верхних дыхательных путей делают промывание носа и полоскание рта и глотки 0,5% раствором хлорамина, 2% раствором соды или 0,1 - 0,05% раствором марганцевокислого калия.
- В случае попадания иприта в желудок необходимо вызвать рвоту и промыть желудок
- Для уменьшения явлений общерезорбтивного действия ядов рекомендуют внутривенное введение 30% раствора
- гипосульфита натрия в количестве 10 15 мл

Заключение вопросу

- антидотной терапии не разработано
- на всех этапах медицинской эвакуации
 поражённым проводится санитарная обработка,
 от частичной, до полной

Объём медицинской помощи можно условно разделить на:

- а) купирование местных поражений;
- □ б) борьба с токсическим (ипритным шоком);
- в) предупреждение и лечение радиомиметического синдрома

Ингибиторы синтеза белка, не образующие аддукты ДНК и РНК

□ группа полипептидных токсинов высших растений - изучается с целью создания эффективных противоопухолевых препаратов

Рицин

- □ рицин в большом количестве содержится в бобах клещевины обыкновенной (Ricinus communis L) (до 3%)
- ранее ассматривался как БОВ

Физико-химические свойства. Токсичность

- □ белый, не имеющий запаха, легко диспергируемый в воздухе и растворимый в воде порошок
- малоустойчив в водных растворах и при хранении постепенно теряет токсичность
- токсичен для большинства видов теплокровных животных
- через неповрежденную кожу рицин не оказывает токсического действия

Токсикокинетика

- через гематоэнцефалических барьер проникает плохо
- быстро фиксируется на поверхности эритроцитов,
 клеток эндотелия, различных органов и тканей
- время пребывания несвязанной формы токсина в крови не превышает нескольких минут

Основные проявления интоксикации

- через 10-12 признаки сильного раздражение желудочно-кишечного тракта: тошнота, рвота, сильные боли в животе, приступы кишечной колики, профузный понос (часто с кровью)
- □ позже развивается лихорадка, головная боль, цианоз кожных покровов, появляется чувство жажды, артериальное давление падает, пульс частый слабого наполнения, выступает холодный пот
- в крайне тяжелых случаях судорожный синдром, признаки поражения печени (желтуха) и почек (альбуминурия, гематурия, уменьшение количества отделяемой мочи, вплоть до анурии)
- при смертельных интоксикациях летальный исход наступает на 2 7 сутки
- для несмертельного отравления клещевиной характерно затяжное течение, проявляющееся гипертермией, гиподинамией, заторможенностью, прогрессирующей слабостью, анорексией, поносом,

Резоротивное действие только в эксперименте

Механизм токсического действия

три периода:

- фиксации токсина на мембране клеток,
- □ проникновения в клетку эндоцитоз, внутри клетки молекула токсина разрушается с высвобождением Ацепи
- □ повреждения клетки А-цепь повреждает рибосомы, нарушается синтез белка в клетке и она погибает

Мероприятия медицинской защиты

- использование индивидуальных технических средств защиты (средства защиты органов дыхания) в зоне химического заражения;
- участие медицинской службы в проведении химической разведки в районе расположения войск, проведение экспертизы воды и продовольствия на зараженность АОХВ;
- запрет на использование воды и продовольствия из непроверенных источников;
- обучение личного состава правилам поведения на зараженной местности.

Специальные профилактические медицинские мероприятия:

проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.

Специальные лечебные мероприятия:

- своевременное выявление пораженных;
- оказания первой и доврачебной и первой врачебной (элементы)
 помощи пострадавшим
- подготовка и проведение эвакуации

Медицинские средства защиты

- Помощь пораженным оказывается по общим правилам с использованием этиотропных и патогенетических средств терапии состояний, развивающихся после воздействия яда
- Для ослабления местного действия рицина на догоспитальном этапе пораженным необходимо тщательно промыть глаза, обработать слизистые оболочки носоглотки и полости рта водой, раствором соды или физиологическим раствором
- При пероральном отравлении с целью оказания помощи показано промывание желудка
- При болях в глазах, по ходу желудочно-кишечного тракта показано назначение местных анестетиков
- Имеется резерв времени для эвакуации пораженных в специализированные лечебные учреждения
- Специальные табельные средства медицинской защиты отсутствуют

Токсичные химические вещества цитотоксического действия

- 1. Токсичные модификаторы пластического обмена галогенированные диоксины, бифенилы
- 2. Ингибиторы синтеза белка и клеточного деление
- □ образующие аддукты нуклеиновых кислот сернистый иприт, азотистый иприт
- не образующие аддукты нуклеиновых кислот рицин
- **3.** Тиоловые яды мышьяк, люизит

Тиоловые яды

 К тиоловым ядам относятся вещества, в основе механизма токсического действия которых лежит способность связываться с сульфгидрильными группами, входящими в структуру большого количества биологических молекул, среди которых структурные белки, энзимы, нуклеиновые кислоты, регуляторы биологической активности и т.д

- 🛘 Мышьяк
- 🛛 Ртуть
- □ Цинк
- □ Хром
- □ Никель
- □ кадмий и их многочисленные соединения

Соединения мышьяка

- Мышьяксодержащие вещества широко используются в медицине, а также в качестве пестицидов (инсектицидов и гербицидов), осушителей в производстве изделий из хлопка, консервантов древесины, пищевых добавок в рацион некоторых животных и т.д.
- в Японии (1972 г) более 12 тысяч детей получили отравление консервированным молоком, зараженным мышьяком (130 умерли)
- На основе мышьяка в начале XX века были созданы высокотоксичные боевые отравляющие вещества, запасы которых в настоящее время подлежат уничтожению

Общая характеристика

- По особенностям строения и биологической активности соединения мышьяка подразделяют на 3 основные группы:
 - а) неорганические соединения;
 - □ б) органические соединения;
 - В) арсин (АѕН₃).

Люизит

- Смесь изомеров β-хлорвинилдихлорарсина (αлюизита), бис-(β-хлорвинил)хлорарсина (βлюизита) и тихлорида мышьяка
- □ темно-коричневая жидкость с резким раздражающим запахом, напоминающим запах герани, отравляющее вещество кожно-нарывного действия, названа по имени американского химика Уинфорда Ли Льюиса (Winford Lee Lewis

Страна	Тонн Люизита	
США	20,150	
Советского Союза	22,700-47,000	
Япония	1,400	
Англия, Ирак, Северная Корея, Италия	2,000	

Физико-химические свойства. Токсичность

- Свежеперегнанный люизит бесцветная, умеренно летучая жидкость; при хранении через некоторое время приобретает темную окраску с фиолетовым оттенком. Запах люизита напоминает запах растертых листьев герани. Температура кипения +196,4°C, температура замерзания –44,7°C
- Люизит хорошо растворяется в органических растворителях, в жирах, смазках, впитывается в резину, лакокрасочные покрытия, пористые материалы
- Вещество примерно в 2 раза тяжелее воды, в которой оно растворяется плохо (не более 0,05%). Растворившийся в воде люизит довольно быстро гидролизуется с образованием хлорвиниларсеноксида, уступающего по токсичности исходному агенту
- Попавший в окружающую среду люизит формирует зоны стойкого химического заражения. В зависимости от погодных условий вещество сохраняется на местности от суток (дождливая, теплая погода) до месяца (холодное время года)

Токсикокинетика

- быстро всасывается через кожу и слизистые оболочки дыхательных путей и желудочно-кишечного тракта в кровь и ею разносится по органам и тканям организма
- легко преодолевает гисто-гематические барьеры,
 и проникает внутрь клеток через клеточные
 мембраны.
- □ подвергается гидролизу, окислению, дегалогенированию, даелкилированию образуются многочисленные мышьяк-содержащие метаболиты, выделяющиеся из организма со скоростью выделения неорганических соединений металла

Основные проявления интоксикации

Местное действие:

- воспалительно-некротические изменения и явления раздражения тканей на месте аппликации Резорбтивное действие:
- нарушение пластического и энергетического обмена в органах и тканях, структурными изменениями и гибелью клеток, с которыми взаимодействует токсикант (сосудистая система, нервная система, паренхиматозные органы)

Поражение органов дыхания

- першенье и царапанье в горле, появляются чихание, насморк, кашель, слюнотечение, осиплость голоса
- гиперемия слизистых оболочек зева, гортани и носа и их отечность.
- прогрессирующие воспалительнонекротические изменения слизистой оболочки трахеи и бронхов
- развитие токсического отека легких с характерной симптоматикой
- выздоровление при благоприятном течении наступает только через полтора - два месяца

Поражение глаз

□ Аналогичны поражению ипритом

Поражение глаз

Глаза наиболее чувствительны к действию иприта и могут рассматриваться как биологический индикатор ипритного поражения

- Симптомы поражения глаз появляются через 0,5 3 чась
 - Легкая степень: гиперемия конъюнктивы, отечность конъюнктивы (неосложнённый конъюнктивит);
 - Средняя степень: гиперемия конъюнктивы, кожи век, отечность конъюнктивы, кожи век (осложненный конъюнктивит);
 - Тяжелая степень: кератоконъюнктивит, изъязвление и помутнение роговицы, ирит, иридоциклит, панофтальмит

Поражение кожи

- 1. скрытый период практически отсутствует
- ощущаются боль, жжение на месте воздействия
- проявляются воспалительные изменения кожи
 - □ легкое болезненная эритема
 - средней тяжести поверхностный пузырь,
 эрозивная поверхность эпителизируется в
 течение 1 2 недель
 - □ тяжелое длительно незаживающая язва

сравнительно характеристика поражения кожи ипритом и люизитом (в жидком состоянии)

Характер действия ОВ	Люизит	Иприт	
Растекание капель	Значительное	Более слабое	
Время всасывания	5 мин	20-30 мин	
Скрытый период	Отсутствует	4-6 Ч	
Эритема	Яркая, имеет четкие границы со	Неяркая (цвет семги), не имеет	
	здоровой кожей (появляется	четких границ со здоровой	
	через 30 мин)	кожей	
Отек кожи	Резко выражен	Не выражен	
Пузыри	Через 12-13 ч единичные,	Через 24 ч, сначала мелкие в	
	большие	виде ожерелья	
Язва	Дно ярко-красное с	Дно язвы бледное, глубина	
	мелкоточечными	язвы меньшая	
	кровоизлияниями, может		
	захватывать кожу и подлежащие		
	ткани		
Максимум воспалительных	Через 48 ч	Через 10-12 дней	
изменений на месте		·	
поражения			
Продолжительность течения	2-3 недели	6-8 недель	
Пигментация вокруг	Отсутствует (имеется	Стойкая	
поражения	шелушение)	1	
	шолушонној		

Поражение желудочно-кишечного тракта

- <u>тяжелый геморрагический гастроэнтерит</u>
 - □ слюнотечение,
 - □ тошнота,
 - обильная и упорная рвота (рвотные массы с запахом люизита и примесью крови),
 - □ боли в животе,
 - □ Понос
- Функциональные нарушения деятельности ЖКТ наблюдаются также и при иных способах аппликации вещества (ингаляционном, накожном) и являются проявлениями резорбтивного действия яда

Резорбтивное действие

Для резорбтивного действия люизита характерными являются сосудистые расстройства, а также дегенеративные изменения со стороны клеток нервной системы и паренхиматозных органов

- □ состояние угнетения
- 🛾 прогрессирующее падение АД,
- □ выход жидкой части крови в серозные полости и межклеточное пространство тканей отек легких, гидроторакс, гидроперикард
- □ развитие выраженной лейкопении, лимфо- и эозинопении
- 🛾 снижение массы тела, потеря аппетита и адинамия

Мероприятия медицинской защиты

Специальные санитарно-гигиенические мероприятия:

- использование индивидуальных технических средств защиты (средства защиты кожи; средства защиты органов дыхания) в зоне химического заражения;
- участие медицинской службы в проведении химической разведки в районе расположения войск, проведение экспертизы воды и продовольствия на зараженность АОХВ;
- запрет на использование воды и продовольствия из непроверенных источников;
- обучение личного состава правилам поведения на зараженной местности.

Специальные профилактические медицинские мероприятия:

- проведение <mark>частичной санитарной обработки</mark> (использование ИПП) в зоне химического заражения;
- проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.

Специальные лечебные мероприятия:

- применение антидотов и средств патогенетической и симптоматической терапии состояний, угрожающих жизни, здоровью, дееспособности пораженного, в ходе оказания первой (само-взаимопомощь), доврачебной и первой врачебной (элементы) помощи пострадавшим.
- подготовка и проведение эвакуации

Медицинские средства защиты

Препараты для обезвреживания мышьяка, не всосавшегося во внутренние среды организма, на поверхности кожи, слизистой глаз, в просвете желудочнокишечного тракта мочевины

Лечебные антидоты (донаторы SH – унитиол)

Средства симптоматической и патогенетической помощи пострадавшим

Препараты для обезвреживания мышьяка, не всосавшегося во внутренние среды организма, на поверхности кожи, слизистой глаз, в просвете желудочно-кишечного тракта мочевины

- □ частичная санитарная обработка ИПП
- □ 30% мазь унитиола
- □ промыть глаз водой либо 0,25% раствором хлорамина и ввести в коньюнктивальный мешок на 1 2 минуты 30% мазь унитиола
- □ обмывание слизистой дыхательных путей растворами 0,05% КМnO₄, 0,25 1% хлорамина
- □ промыть желудок и пищевод раствором марганцовокислого калия (0,05% раствор) + внутрь 5 мл 5% раствора унитиола

Специфические противоядия соединений мышьяка

Донаторы сульфгидрильных групп

- унитиол в ампулах по 5 мл 5% водного раствора
- □ димеркаптосукцинат (ДМС)
- □ Д-пенициламин (группа монотиолов)

применение специфических противоядий не всегда устраняет симптомы интоксикации - важнейшим направлением оказания помощи является борьба с развивающейся острой сердечно-сосудистой недостаточностью

Число летальных исходов связанных с ОВ во время первой мировой войны

Количество (тонн)	Смертей	% Смертей
475,340	56,000	11.7
190,000	8,000	4.2
13,300	4,627	34.7
70,752	1,421	2.0
180,983	6,062	3.3
78,663	2,280	2.9
1,009,038	78,390	7.7
	(тонн) 47/5,3410 190,000 13,300 70,752 180,983 78,663	(тонн)Смертей475,34056,000190,0008,00013,3004,62770,7521,421180,9836,06278,6632,280

Hammond, James W. *Poison Gas: The Myths Versus Reality*. New York: Greenwood Group, Incorporated, 1999. 36.

Токсичные химические вещества цитотоксического действия

БЛАГОДАРЮ ЗА ВНИМАНИЕ!