

Министерство здравоохранения Украины Запорожский государственный медицинский университет Кафедра фармацевтической химии

Витамины. Общая характеристика. Классификация.

Витамины алифатического строения. Витамин С.

Витамины — группа низкомолекулярных органических соединений относительно простого строения И разнообразной химической природы, объединённая по признаку абсолютной необходимости ДЛЯ гетеротрофного организма в качестве составной части пищи, и являющиеся биологическими катализаторами, учавствующими в обменных процессах в составе ферментных систем.

Химическая класификация витаминов:

- 1. Алифатического ряда: С, холин, пантотеновая и пангамовая кислоты и их соли.
- 2. Алициклического ряда: D, A.
- 3. Ароматического ряда: гр. К.
- 4. Гетероциклического ряда:

а). Производные пиридина
$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Витамины алифатического ряда

Acidum ascorbinicum

Acidum ascorbicum Vitaminum C

ү-Лактон-2,3-дегидро-L(+)-гулоновой кислоты

Получение

Химические свойства:

1. Обратимое окисление:

2. Необратимое окисление:

Идентификация

1. С аммиачным раствором нитратом серебра: темный осадок металлического серебра (ГФУ):

2. С 2,6-дихлорфенолиндофенолятом натрия:

$$HO$$
 OH ON_a ON_b $ON_$

7

3. Образование турнбулевой сини:

$$3\text{FeCl}_2 + 2\text{K}_3[\text{Fe}(\text{CN})_6] \longrightarrow 6\text{KCl} + \text{Fe}_3[\text{Fe}(\text{CN})_6]_2$$

òóðí áóëåâà ñèí ü

4. Образование белого осадка тиоцианата меди (I):

$$C-OH$$
 + 2CuSO₄ + 2NH₄NCS \rightarrow 2CuNCS↓ + $C-OH$ + (NH₄)₂SO₄ + H₂SO₄

5. С железа (II) сульфатом:

ОПРЕДЕЛЕНИЕ ЧИСТОТЫ (ГФУ)

- •Прозрачность, цветность;
- •Удельное вращение от +20,5 до +21,5;
- •Щавелевая кислота с хлоридом кальция в уксуснокислой среде;
- •Медь, железо методом атомно-адсорбционной спектроскопии;
- •Тяжелые металлы;
- •Сульфатная зола;
- •Национальная часть: Остаточные количества органических растворителей.

КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ

1. Йодатометрия:

HO OH
HO OH
HO CH
$$_{\text{CH}_{2}\text{OH}}$$
 $_{\text{CH}_{2}\text{OH}}$
 $_{\text{CH}_{2}\text{OH}}$
 $_{\text{CH}_{2}\text{OH}}$
 $_{\text{CH}_{2}\text{OH}}$
 $_{\text{CH}_{2}\text{OH}}$
 $_{\text{CH}_{2}\text{OH}}$
 $_{\text{CH}_{2}\text{OH}}$

$$IO_3^- + 6 H^+ + 6 e \rightarrow I^- + 3 H_2O$$

 $KIO_3 + 5 KI + 6 HCl = 3 I_2 + 6 KCl + 3 H_2O$

2. Йодометрия:

3. Йодхлорметрия:

è çá.
$$ICl + HI \longrightarrow I_2 + HCl$$