

Логика – это наука о формах и способах мышления, рассуждений и доказательств.

Мышление осуществляется через понятия, высказывания и умозаключения.

Понятие — это форма мышления, выделяющая существенные и отличительные признаки объекта.

Умозаключение — это форма мышления, с помощью которой из одного или нескольких простых высказываний (суждений) может быть получено новое составное высказывание (суждение).

Высказывание — это формулировка в форме утверждения или отрицания об объекте и его свойствах. Высказывание может быть истинным или ложным.

Примеры высказываний

Истинное высказывание: «Буква «А» - гласная».

Ложное высказывание: «Компьютер был изобретен в середине XIX века».

Какие из предложений являются высказываниями? Какие из высказываний истинные?

Не высказывание

Не высказывание

- 1. Какой длины эта лента?
- 2. Прослушайте сообщение.
- 3. Делайте утреннюю зарядку! Не высказывание
- 4. Назовите устройства ввода информации. Не высказывание
- 5. Кто отсутствует? Не высказывание
- 6. Париж столица Англии. Ложное высказывание
- 7. Число 11 является простым. Истинное высказывание
- 8. 4+5=10 Ложное высказывание
- 9. Без труда не вытащишь и рыбку из пруда. Истинное высказывание
- 10. Сложите числа 2 и 5. Не высказывание
- 11. Некоторые медведи живут на Севере. Истинное высказывание
- 12. Все медведи бурые. Ложное высказывание
- 13. Чему равно расстояние от Москвы до Ленинграда? Не высказывание
- 14. Сумма углов треугольника 180 градусов. Истинное высказывание

Конъюнкция - логическое умножение

езультат логического умножения является истинным гда и только тогда, когда истинны все входящие в его простые высказывания.

Om лат. conjunctio связываю

Таблица истинности функции логического умножения

A	В	F=A*B
0		0
0		0
1		0
1	1	1

В переводе на естественный язык «и А, и В» «как А, так и В» «А вместе с В» «А несмотря на В» «А. в то время как В»

Пример: Даны высказывания

A - «Число 10 - четное» = ИСТИНА

В – «Число 10 – отрицательное» = ЛОЖЬ

С – «Число 10 кратно 2» = ИСТИНА

А и В – «Число 10 – четное и отрицательное» - ЛОЖЬ

А и С – «Число 10 как четное, так и кратно 2» -

ИСТИНА

Дизъюнкция - логическое сложение

езультат логического сложения является истинным гда, когда истинно хотя бы одно из входящих в него ростых высказываний.

Om лат. disjunctio – различаю

Таблица истинности функции логического сложения

A	В	F=A+B
0		
0		
1		
1	1	1

В переводе на естественный язык «А или В»

Пример: Даны высказывания

A - «Число 10 - четное» = ИСТИНА

В – «Число 10 – отрицательное» = ЛОЖЬ

С – «Число 10 - простое» = ЛОЖЬ

А или В – «Число 10 – четное или отрицательное» - ИСТИНА

А или С – «Число 10 четное или простое» - ИСТИНА

В или С – «Число 10 отрицательное или простое» - ЛОЖЬ

Импликация - логическое следование

езультат логического следования является ложным

Om лат. implicatio – mecнo связывать

Таблица истинности функции логического следования

A	В	F=A→B
0		1
0		1
1		0
1	1	1

В переводе на естественный язык «если А, то В» «В, если А» «Когда А, тогда В» «А достаточно для В» «А только тогда, когда В»

Пример: Даны высказывания

A - «Число 10 - четное» = ИСТИНА

В – «Число 10 – отрицательное» = ЛОЖЬ

С – «Число 10 - простое» = ЛОЖЬ

А ____В – «Если число 10 – четное, то оно - отрицательное» - ЛОЖЬ

А ____ C – «Число 10 простое, если четное» - ЛОЖЬ «Если число делится на 10, то оно делится на 5» ИСТИНА

А – условие, В - следствие

Эквивалентность - логическое равенство

езультат логического равенства является истинным огда и только тогда, когда оба высказывания

Om лат. aeguivalens – равноценное

Таблица истинности функции логического равенства

A	В	F=A↔B
		1
		0
		0
1	1	1

В переводе на естественный язык «А эквивалентно В»

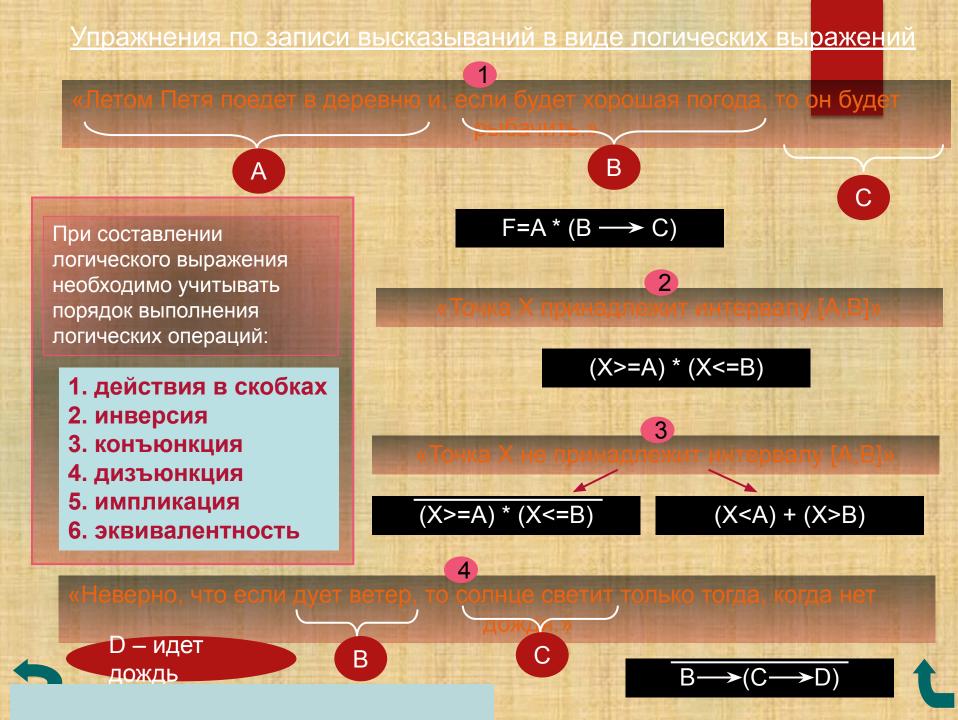
«А только тогда и только тогда, когда В»

Пример: Даны высказывания

A - «Число 10 - четное» = ИСТИНА

В – «Число 10 – отрицательное» = ЛОЖЬ

С – «Число 10 - простое» = ЛОЖЬ


А ← В – «Число 10 – четное, тогда и только тогда,

когда оно - отрицательное» - ЛОЖЬ

В С – «Число 10 такое же простое, как и отрицательное» ИСТИНА

Упражнения с логическими выражениями

7

По мишеням произведено три выстрела. Рассмотрено высказывание:

 P_{k} = «Мишень поражена к-тым выстрелом», где к=1, 2, 3.

Что означают следующие высказывания:

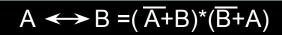
a)
$$P_1 + P_2 + P_3$$

8

Построить таблицу истинности для выражения F=(A+B)*(A+B)

А	В	A+B	Ā	\overline{B}	A+B	
0	0	0	1	1	1	0
0	1	1.31	1	0	12 1	SH 120
111	0	1	0	1	1	1
1 1	1	1	0	0	0	0

9


Вычислить значение булевского выражения X1*X2+X3+X4, при X1=1, X2=0, X3=1, X4=0.

Законы алгебры логики

		The state of the s
Закон	Для «ИЛИ»	Для «И»
Переместительный	X + Y = Y + X	X*Y = Y*X
Сочетательный	X+(Y+Z)=(X+Y)+Z	(X*Y)*Z=X*(Y*Z)
Распределительный	$X^*(Y+Z) = X^*Y+X^*Z$	$X+Y^*Z = (X+Y)^*(X+Z)$
Правила де Моргана	$\overline{X+Y} = \overline{X} * \overline{Y}$	$\overline{X^*Y} = \overline{X} + \overline{Y}$
Идемпотенции	X + X = X	X * X = X
Поглощения	X+X*Y=X	$X^*(X+Y)=X$
Склеивания	$(X*Y)+(\overline{X}*Y)=Y$	$(X+Y)^*(\overline{X}+Y)=Y$
Операции переменной с ее инверсией	X+X=1	$X^*\overline{X}=0$
Операция с константами	X+0=X; X+1=1	X*1=X; X*0=0
Двойного отрицания		
	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$

 $A \longrightarrow B = \overline{A} + B$

Решение содержательных задач с помощью алгебры логики

Алгоритм

Внимательно изучить условие

Выделить простые высказывания и обозначить их буквами

Записать условие задачи на языке алгебры логики

Составить формулу, в которой объединить логическим умножением формулы каждого утверждения, приравнять произведение к 1

Упростить формулу согласно законам – минимизировать логическое выражение

Проанализировать результат или построить таблицу истинности результирующего выражения и найти по таблице значения переменных, для которых значение функции равно 1

Решение логических задач с помощью алгебры логики

F2=C → B*A

 $F3=B \longrightarrow C*A$

«Синоптик объявляет прогноз погоды на завтра и утверждает следующее:

- -1. Если не будет ветра, то будет пасмурная погода без дождя.
- 2. Если будет дождь, то будет пасмурно и без ветра.
- 3. Если будет пасмурная погода, то будет дожды и не будет ветра».

Так какая же погода будет завтра?

А Ветра нет

В Пасмурно

C

Дождь

$$F1*F2*F3 = (A \longrightarrow B*\overline{C})*(C \longrightarrow B*A)*(B \longrightarrow C*A) =$$

$$(\overline{A}+B*\overline{C}) * (\overline{C}+B*A) * (\overline{B}+C*A) =$$

Высказывание истинно (=1), если каждый множитель =1. Поэтому «погода будет ясная, без дождя, но ветреная»

Решение содержательных задач табличным способом

В оркестр приняли трех новых музыкантов: Брауна, Смита и Вессона, умеющих играть на скрипке, флейте, альте, кларнете, гобое и трубе. Известно, что:

- 1) Смит самый высокий;
- 2) играющий на скрипке меньше ростом играющего на флейте;
- 3) играющие на скрипке и флейте и Браун любят пиццу;
- 4) когда между альтистом и трубачом возникает ссора, Смит мирит их;
- 5) Браун не умеет играть ни на трубе, ни на гобое.

На каких инструментах играет каждый из музыкантов, если каждый владеет двумя инструментами.

	Скрипка	Флейта	Альт	Кларнет	Гобой	Труба
Браун	0	0	1	1	0	0
Смит	0	1	0	0	1	0
Вессон	1	0	0	0	0	1

Так как музыкантов трое, а инструментов 6 и каждый владеет только 2-мя, получается, что каждый играет только на тех инструментах, которыми другие не владеют.

0 - не играет на инструменте, 1 – играет на инструменте.

Ответ: Браун играет на альте и кларнете, Смит – на флейте и гобое, Вессон – на скрипке и трубе.

Решение содержательных задач с помощью рассуждений

3

Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: «Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский». Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый?

Решение.

Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно.

Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно.

Остается считать верным третье утверждение, а первое и второе – ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.

Ответ: Сергей изучает китайский язык, Михаил – японский, Вадим – арабский.

Таблицы истинности

Докажите эквивалентность булевских выражений A → B= A + B

Α	В	A→B	A +B
1	1	1	1
0	1	1	1
1	0	0	0
0	0	1	1

2 Восстановите булевское выражение по таблице истинности

X1	X2	X3	F-?
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
01	1	1	1

X1*X2*X3=F1

X1*X2*X3=F3

Ответ: F=F1+F2+F3

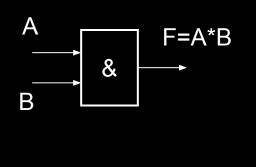
ТОТИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА.Базовые логические элементы

Логический элемент компьютера (вентиль) - это электронная схема, реал<mark>изующа</mark>я базовую логическую операцию и характеризующаяся наличием сигнала на входе и выходе элемента.

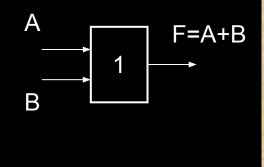
И (конъюнктор), ИЛИ (дизъюнктор), НЕ (инвертор)

С помощью базовых логических элементов можно реализовать любую логическую функцию, выполняющую арифметические операции или хранение информации.

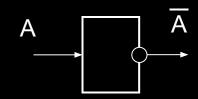
Обычно у вентилей от двух до восьми входов и один или два выхода. Состояние логических элементов характеризуется **таблицей входов-выходов** логических элементов. На входы логических элементов подаются электрические сигналы высокого уровня напряжения (+5 вольт) — «логическая 1», и низкого уровня напряжения (около 0 вольт) — «логический 0»


Чтобы построить логическую схему необходимо:

- 1) определить число логических переменных
- 2) определить количество базовых логических операций и их порядок
- 3) выбрать вентиль для каждой операции и соединить их в порядке выполнения логических операций.



ТОГИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА.Базовые логические элементы

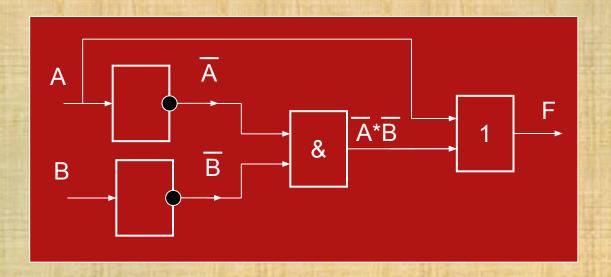

Конъюнктор

Дизъюнктор

Инвертор

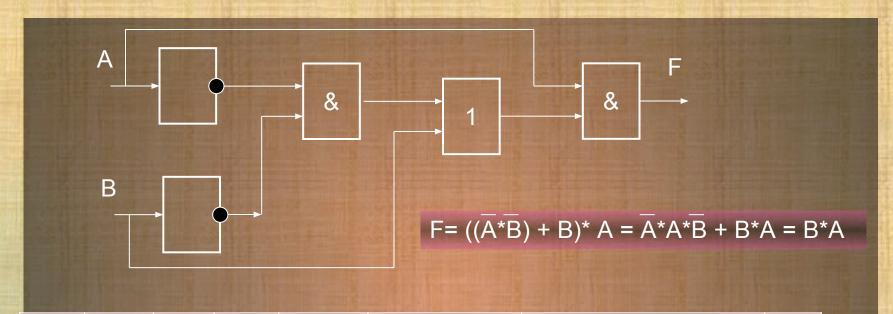
A	F=A*B
0	0
0	0
1	0
1	1

A		
0		
0		
1		
1	1	1


A	Ā
	1
	0

Построение логических схем

Вычертить функциональную логическую схему по логическому выражению, предварительно упростив его: (A+B) + (A*B) + A


$$F=(A+B) + (A*B) + A = A*B + A$$

Построение логических схем

2

По функциональной логической схеме записать логическую функцию F упростить ее и построить таблицу входов-выходов функции F.

А	В	Α	_ B	A*B	A*B+B	((A*B)+B)*A	F=B *A
0	0	1	1	1	1	0	0
0	1	1	0	0	1	0	0
1	0	0	1	0	0	0	0
1	д	0	0	0	1	1	1

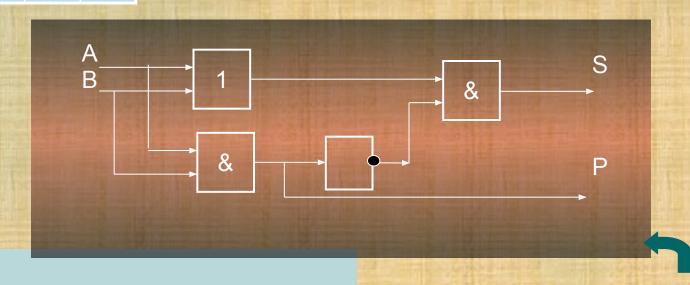
Логические основы компьютера. Одноразрядный двоичный полусумматор

Сумматор – это логическая электронная схема, выполняющая сложение двоичных чисел.

Сконструируем схему одноразрядного полусумматора (без учета переноса из младшего разряда).

1 Запишем таблицу сложения двоичных чисел, обозначив Р – цифру переноса в старший разряд.

А	В	Р	S
0	0	0	
0	1	0	
1	0	0	
1		1	

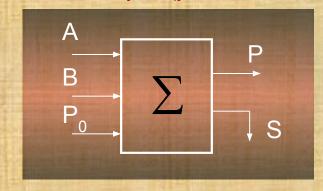

2 Столбец Р соответствует таблице истинности логического умножения.

P=A*B

З Столбец S соответствует логическому сложению, кроме случая, когда две 1.

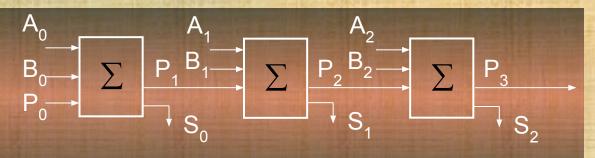
$$S = (A+B)^* \overline{(A^*B)}$$

4 Построим схему для S и Р


Логические основы компьютера. Одноразрядный двоичный сумматор

При сложении чисел A и B в каждом разряде на вход сумматора должны подаваться три двоичных сигнала: цифра A - первое слагаемое, цифра B - второе слагаемое, P₀ – перенос из предыдущего разряда. Выходы одноразрядного сумматора: S – сумма, P – перенос цифры из текущего разряда в старший.

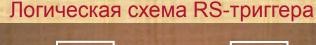
Таблица входов-выходов

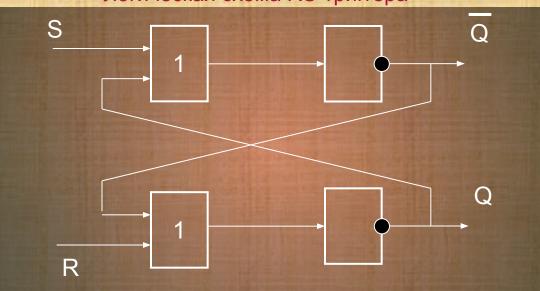

А	В	P ₀	Р	S
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

Вид одноразрядного сумматора в виде единого функционального узла (условное обозначение)

$$S = (A + B + P_0)^* \overline{P}_0 + (A^* B^* P_0)$$

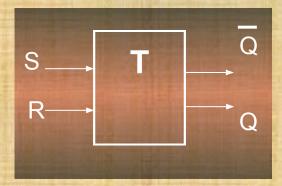
$$S = (A*B) + (A*P_0) + (B*P_0)$$


Вид трехразрядного сумматора



Логические основы компьютера. Триггер

Триггер (trigger – защелка, спусковой крючок) – это устройство , позвол<mark>яющее</mark> запоминать, хранить и считывать 1 бит информации, т.е. он может находится в одном из двух устойчивых состояний - логический 0 или логическая 1, и мгновенно переходить («перебрасываться») из одного электрического состояния в другое.



S – Set (установка)

R – Reset (сбрасывать)

Условное обозначение RS-триггера

При подаче сигнала на вход S триггер переходит в устойчивое единичное состояние

При подаче сигнала на вход R триггер сбрасывается в устойчивое нулевое состояние

При отсутствии сигнала триггер хранит последнее значение

S	R	Q	Q	Режим триггера
1	0	11	0	Установка 1
0	1	0	11	Установка 0
0	0	Последние значения		Хранение информации
1 1	1	Запрещено!		

Логические основы компьютера. Регистры

Регистры – совокупность триггеров, предназначенных для хранения и обработки двоичной информации. Число триггеров в регистре называется разрядностью компьютера и равна 8, 16, 32, 64.

Триггер был создан советским ученым А. Н.Бонч-Бруевичем

Виды регистров	Назначение
Регистры памяти (ячейки внутренней памяти)	Служат для хранения информации.
Счетчик команд	Регистр устройства управления процессора (УУ), хранит адрес выполняемой в данный момент команды, по которому она находится в ОЗУ.
Регистр команд	Служит для вычисления адреса ячейки, где хранятся данные, требующиеся программе.
Регистр флагов	Регистр УУ, хранит информацию о последней команде, выполненной процессором.

Сколько триггеров необходимо для хранения информации объемом 1 бт, 1 Кбт, 1 Мбт, 64 Мбт?

Контрольная работа по теме «Основы алгебры логики и логические основы компьютера»

Вариант 1

- 1. Запишите следующие выказывания в виде логического выражения, определив простые высказывания и используя логические операции:
 - А) На уроке информатики старшеклассники отвечали на вопросы учителя и выполняли практическую работу.
 - Б) Если сумма цифр числа делится на 3, то число делится на три.
- 2. Составьте таблицу истинности логического выражения: $F = A \vee \overline{B} \& (\overline{A \vee B})$
- 3. Нарисуйте логическую схему для следующего логического выражения и определите значения сигналов на входах и выходе: $F = A \& B \lor B \& C$.
- 4. Упростите логическое выражение: $F = X \vee Y \vee \overline{X \& Y}$.
- 5. Решите задачу:

Компьютер вышел из строя. Известно, что:

- 1) Если монитор неисправен, то исправна видеокарта, но не исправна оперативная память.
- 2) Если видеокарта исправна, то исправна оперативная память, но неисправен монитор.
- 3) Если оперативная память исправна, то исправна видеокарта, но неисправен монитор

Исправен ли монитор?

Вариант 2

- 1. Запишите следующие выказывания в виде логического выражения, определив простые высказывания и используя логические операции: А) Число 2005 нечетное и четырехзначное.
 - Б) Если Солнце всходит на востоке, то заходит оно на западе,
- 2. Составые таблицу истинности логического выражения: $F = \overline{A} \& B \lor (\overline{A} \& B)$
- 3. Нарисуйте логическую схему для следующего логического выражения и определите значения сигналов на входах и выходе: $F = \overline{A} \& \overline{B} \lor C \lor A$.
- 4. Упростите логическое выражение: $F = (X \lor Z) \& (X \lor \overline{Z}) \& \overline{Y}$
- 5. Решите задачу:

Кто из учеников идет на олимпиаду до физике, если известно следующее:

- 1) Если Миша идет, то идет Аня, но не идет Маша.
- 2) Если Маша не идет на олимпиаду, то идет Аня, но не идет Миша.
- 3) Если Аня идет, то идет Миша, но не идет Маша.

