Назначение и краткая характеристика основных компонентов вычислительных сетей, основные требования к вычислительным сетям, модели взаимодействия открытых систем, понятие протокола, топологию и архитектуру сетей, способы подключения компьютеров к сети

Назначение вычислительных сетей

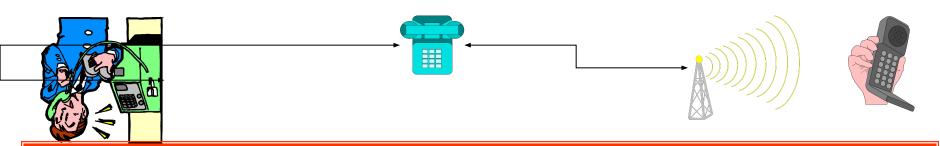
Вычислительная (компьютерная) сеть — это совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.

Основное <u>назначение</u> вычислительной сети состоит в совместном использовании ресурсов и осуществление быстрой связи как внутри организации, так и за ее пределами. Все компьютерные сети без исключения имеют одно назначение — обеспечение совместного доступа к общим ресурсам.

Вычислительная сеть состоит из трех компонентов:

- сети передачи данных, включающей в себя каналы передачи данных и средства коммутации;
- компьютеров, связанных сетью передачи данных;
- сетевого программного обеспечения.

Вычислительная сеть — это сложный комплекс взаимосвязанных программных и аппаратных компонентов:


компьютеров (хост-компьютеры, сетевые компьютеры, рабочие станции, серверы), размещенных в узлах сети; сетевой операционной системы и прикладного программного обеспечения, управляющих компьютерами; коммуникационного оборудования — аппаратуры и каналов передачи данных с сопутствующими им периферийными устройствами; интерфейсных плат и устройств (сетевые платы, модемы); маршрутизаторов и коммутационных устройств.

Требования, предъявляемые к современным вычислительным сетям

Главным требованием, предъявляемым к сетям, выполнение сетью основной является обеспечение пользователям функции потенциальной возможности доступа разделяемым ресурсам всех компьютеров, объединённых в сеть. Все остальные требования производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость — связаны с качеством выполнения этой основной задачи.

Передача информации

Обмен информацией производится по <u>каналам передачи информации.</u> Каналы передачи информации могут использовать различные физические принципы.

Общая схема передачи информации включает в себя отправителя информации, канал передачи информации и получателя информации.

Отправитель информации

Канал передачи информации

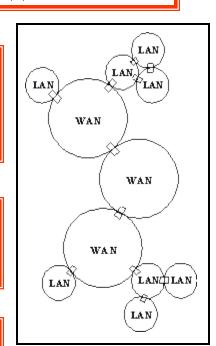
Получатель **информации**

Пропускная способность канала информации

Пропускная способность канала информации измеряется обычно в битах в секунду (бит/с), Кбит/с и Мбит/с. Однако, иногда в качестве единицы используется и байт в секунду (байт/с), Кбайт/с и Мбайт/с.

Соотношения между единицами пропускной способности канала передачи информации такие же, как между единицами измерения количества информации:

$$1 \text{ байт/c} = 2^3 \text{ бит/c} = 8 \text{ бит/c}$$
 $1 \text{ Кбит/c} = 2^{10} \text{ бит/c} = 1024 \text{ бит/c}$
 $1 \text{ Мбит/c} = 2^{10} \text{ Кбит/c} = 1024 \text{ Кбит/c}$
 $1 \text{ Гбит/c} = 2^{10} \text{ Мбит/c} = 1024 \text{ Мбит/c}$


Классификация компьютерных сетей

Критерием для классификации сетей является их масштаб.

LAN - Local Area Network - локальная сеть, компьютеры расположены на близком расстоянии, как правило в пределах одного здания - **ЛКС**.

MAN - Metropolitan Area Network - районная сеть, компьютеры расположены в пределах городского района или небольшого города.

WAN - Wide Area Network - глобальная сеть, охватывающая страну, континент.

HAN - Home Area Network - домашняя сеть.

Что такое модель OSI?

Модель Взаимодействия Открытых Систем (OSI) определяет основные задачи которые необходимо решить для сетевой коммуникации

- Каждый уровень определяет сетевые задачи
- Каждый уровень взаимодействует с уровнями выше и ниже
- Уровень 7 предоставляет услуги программам для получения доступа к сети
- 1 и 2 уровни определяют физическую среду сети и связанные с ней задачи

Протоколы передачи данных.

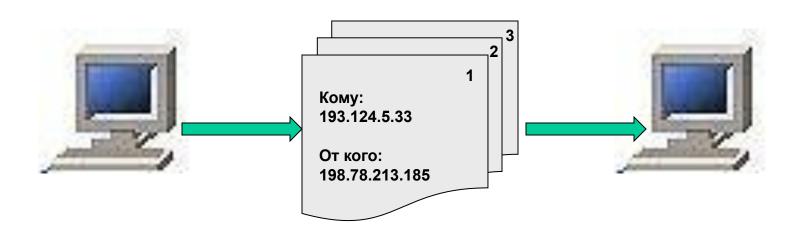
Протоколы — единые правила передачи данных в компьютерной сети.

Протокол не является программой. Правила и последовательность выполнения действий при обмене информацией, определенные протоколом, должны быть реализованы в программе.

Легче всего поддаются стандартизации протоколы трех нижних уровней модели архитектуры открытых систем, так как они определяют действия и процедуры, свойственные для вычислительных сетей любого класса.

Труднее всего стандартизовать протоколы верхних уровней, особенно прикладного, из-за множественности прикладных задач и в ряде случаев их уникальности.

Интернет — соединение, объединение различных сетей. При объединении в единое целое нескольких сетей используют специальный межсетевой протокол. Межсетевой протокол, по-английски — Internet Protocol (IP), и дал название сети Интернет.

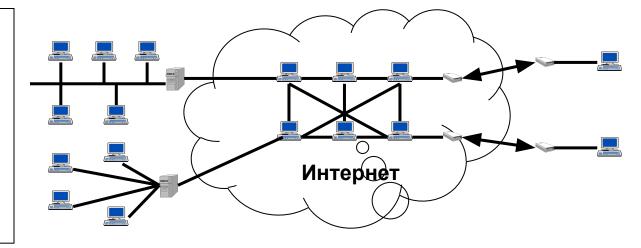

В сети <mark>Интернет</mark> действует международный протокол ТСР/IР, созданный в 70-е годы.

Примеры протоколов: CSMA/CD, SLIP, PPP, UUCP, ISO, TCP/IP.

Протокол передачи данных ТСР/ІР

Сеть Интернет функционирует и развивается благодаря использованию единого протокола передачи данных *TCP/IP*.

Internet Protokol (IP) - протокол маршрутизации - обеспечивает маршрутизацию IP-пакетов, т.е. доставку информации от компьютера-отправителя к компьютеру-получателю.


Transmission Control Protocol (TCP) - транспортный протокол - обеспечивает разбиение передаваемых файлов на IP-пакеты в процессе передачи и сборку файлов в процессе получения.

Глобальная компьютерная сеть Интернет

В 1969 году специалистами из Пентагона была создана крупная децентрализованная компьютерная сеть *Advanced Research Project Agency Network* (*Arpanet*). Спустя некоторое время доступ к Arpanet получили и гражданские учреждения США. В 1977 году началось слияние Arpanet с другими сетями как внутри США, так и в других развитых странах. В результате такого слияния и родилась глобальная компьютерная сеть *Internet*.

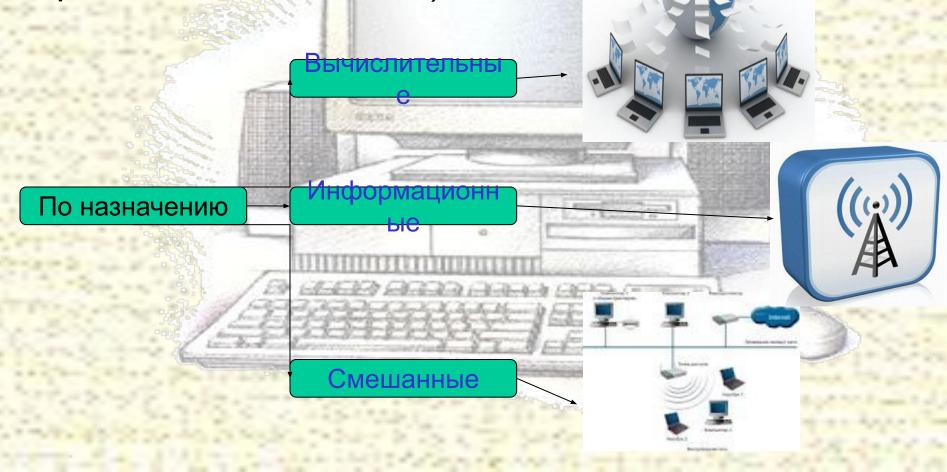
Интернет - это глобальная компьютерная сеть, объединяющая многие локальные, региональные и корпоративные сети и включающая десятки миллионов компьютеров.

Интернет фактически является сетевой базой данных. Гиперссылки связывают между собой сотни миллионов документов в единую сетевую базу данных.

Адресация в Интернете

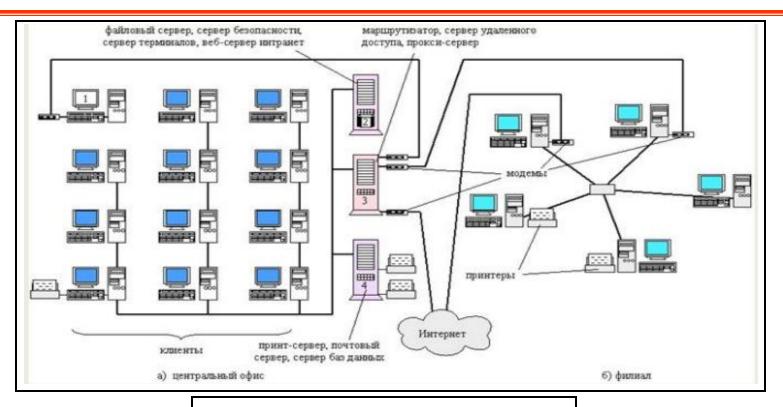
Каждый компьютер, подключённый к Интернету, имеет свой уникальный 32-битовый **IP-адрес** (Internet Protokol). Возможно $2^{32} = 4$ 294 967 296 **IP**-адресов, записываемых в виде четырех десятичных чисел от 0 до 255, разделенных точкой: **123.45.67.89**.

IP-адрес состоит из двух частей, одна из которых является **адресом сети**, а другая **адресом компьютера** в данной сети.


Все адреса подразделяются на три класса: **A**, **B**, **C**. Первые биты адреса отводятся для идентификации класса, а остальные разделяются на адрес сети и адрес компьютера в этой сети.

Класс А	0	Α	дре	с сети (7 бит)	Адрес компьютера (24 бит)		
Класс В	1	0	A,	дрес сети (14 би	1T)	г) Адрес компьютера (16 бит)	
Класс С	1	1	0	Адрес сети (21 бит)) Адрес компьютера (8 бит)	

Класс сети	Класс А	Класс В	Класс С
Адрес Кол. сетей	число от 1 до 126	число от 128 до 191	число от 192 до 223
	126	16 384	2 097 152
"Комп. в кажд.	16 777 214	65 534	254


Классификация компьютерных сетей

Топология - физическое расположение компонентов сети (кабели, станции, шлюзы, разветвители и т.д.).

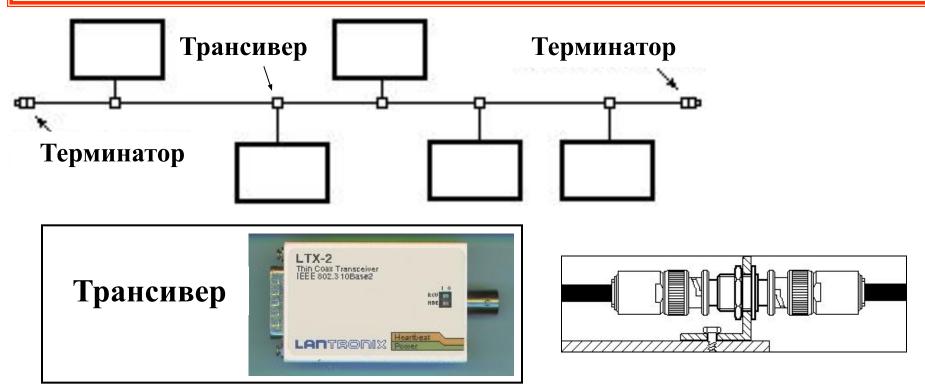
Топология ЛКС

Топология ЛКС определяет общую схему соединения компьютеров в сети. Существуют три базовые топологии ЛКС: шина, звезда и кольцо.

Выбор топологии влияет на:

- состав оборудования;

- возможности расширения сети;


- возможности оборудования;

- способ управления сетью.

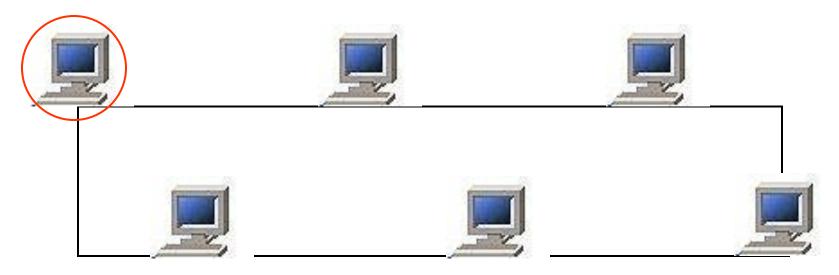
Топология «Шина»

Один кабель используется всеми рабочими станциями по очереди.

Пассивная топология. Сообщение, посылаемое одним компьютером, принимается всеми остальными компьютерами. Компьютеры только «слушают» кабель, но не перемещают сообщения от отправителя к получателю.

Выход из строя одного компьютера не нарушает работу сети.

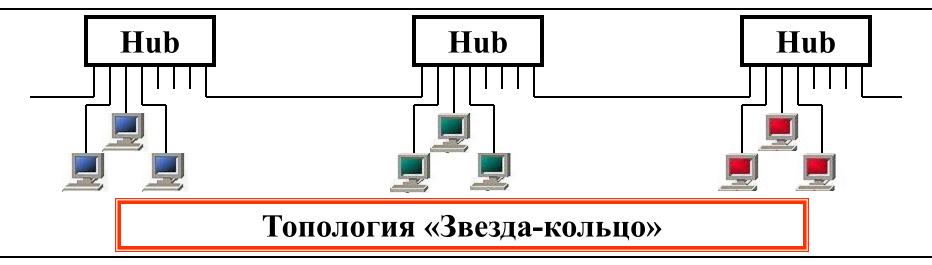
Топология «Звезда»


Каждая рабочая станция подключена к объединяющему устройству - **концентратору** (*hub*). По этой схеме могут быть объединены несколько сетей с образованием разветвленной конфигурации.

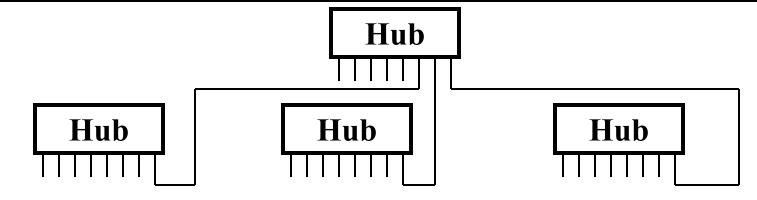
Используются как активные, так и пассивные концентраторы.

Топология «Кольцо»

Данные, ведомые маркером, передаются последовательно от одной рабочей станции к другой и проходят через каждый компьютер. Пакет, адресованный другой станции, передается дальше до тех пор, пока не достигнет получателя.



Каждый компьютер выступает в роли повторителя, усиливая сигналы. Неисправность любого компьютера выводит из строя всю сеть.


Комбинированные топологии

Топология «Звезда-шина»

Сегменты сети с топологией «звезда» объединяются при помощи магистральной линейной шины.

Все концентраторы подключены к главному концентратору, образуя «звезду». Кольцо реализуется внутри главного концентратора.

Типы ЛКС

Существует два принципиальных способа организации программного обеспечения ЛКС: одноранговые сети и сети с централизованным управлением на основе сервера.

Одноранговые сети

- объединяют обычно не более 10 компьютеров;
- все компьютеры равноправны, каждый компьютер функционирует как клиент и как сервер, то есть нет иерархии сети и ответственного за всю сеть;
- пользователи сами решают, какие ресурсы на своем компьютере сделать доступными в сети и обеспечивают защиту информации.

Сети на основе сервера

Стали промышленным стандартом. Работают под управлением сетевых ОС. Круг задач, которые выполняет сервер, многообразен и сложен. Чтобы серверы отвечали современным требованиям пользователей, в больших сетях их делают специализированными: серверы файлов и печати; приложений; почтовые; факсов; связи (коммуникационные); служб каталога. Администрирование сети.

Способы подключения к сети Интернет

На сегодняшний день основными видами соединений с интернетом являются:

- 1.проводное,
- 2.беспроводное и
 - 3. Wi-Fi.

Все они имеют свои положительные и отрицательные стороны. В каждой ситуации наиболее удобным считается определенный вид соединения. Выбор подключения может зависеть от деятельности пользователя, его потребностей и назначения Интернета. Так же имеет значение местопребывание пользователя (дома, в поездке, за границей), что влияет на выбор возможности подключения к сети Интернет.

Локальные компьютерные сети (ЛКС)

Локальная компьютерная сеть объединяет небольшое количество компьютеров и позволяет пользователям совместно использовать ресурсы компьютеров, а также периферийных устройств (принтеров, плоттеров, дисков, модемов и др.), подключённых к сети.

Подключение компьютера к локальной сети осуществляется с помощью специальной платы - **сетевого адаптера**. Основной функцией сетевого адаптера является приём и передача информации в сети.

Некоторые сетевые адаптеры (например **EtherNet**) позволяют объединять в сеть компьютеры различных аппаратных и программных платформ (IBM-совместимые, Macintosh, Unix-компьютеры).

Скорость передачи данных по локальной сети обычно находится в диапазоне от 10 до 100 Мбит/с.

Сетевой адаптер

Проводное подключение

Беспроводное подключение

3G (3rd generation) – 3-е поколение мобильной связи:

• до 10 Мбит/с (СкайЛинк, Мегафон, МТС, Билайн)

4G (4rd generation) – 4-е поколение

до 1 Гбит/с (Yota)

Wi-Fi-подключение

современная беспроводная технология соединения компьютеров в сеть или подключения к интернету.

Компьютер с сетевым адаптером Wi-Fi

•Зависимость скорости от расстояния до точки доступа и наличия препятствий для прохождения электромагнитный волн

Динамика роста интернет-пользователей

Спасибо за внимание!

