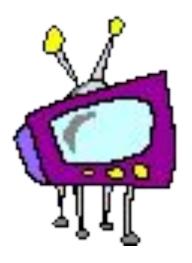
Технологии информационного моделирования

Одинцов О.А. Учитель информатики МБОУ г. Астрахани «СОШ № 48»



ПЛАН:

- Моделирование зависимостей между величинами
- Модели статистического прогнозирования
- Моделирование корреляционных зависимостей
- Модели оптимального планирования

Применение математического

МОДЕЛИРОВАНИЯПрименение математического моделирования постоянно требует учета зависимостей одних величин от других.

Примеры зависимостей:

- время падения тела на землю зависит от его первоначальной высоты;
- давление газа в баллоне зависит от его температуры;
- уровень заболеваемости жителей 3) города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.

Реализация математической модели требует владения приемами представления зависимостей между величинами.

Методы представления

Зависимостей Величина количественная характеристика исследуемого объекта

Характеристики величины				
Имя:	Тип:	Значение		
отражает смысл	определяет	констант	переменна	
величины	возможные значения	a	R	
	величины			

Имя величины может быть

смысловым

«давление газа»

символическим

 \boldsymbol{P}

Основные типы величин:

числовой

символьный

логический

Пример константы – число Пифагора

 $\pi = 3,14259...$

В описании процесса падения тела переменными величинами являются высота *H* и время падения *t*

Виды зависимостей

Функциональной зависимостью называется связь между двумя величинами, при которой изменение одной из них вызывает изменение другой.

Пример 1: t (c) – время падения; H (m) – высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (m/c^2) будем считать константой.

Пример 2: P (н/м²) – давление газа (в единицах системы СИ давление измеряется в ньютонах на квадратный метр); t °C – температура газа. Давление при нуле градусов $P_{\rm o}$ будем считать константой для данного газа.

Зависимость между величинами является полностью определенной.

Виды зависимостей

Иная зависимость носит более сложный характер, одна и та же величина может принять разные значения, поскольку на нее могут оказывать влияния и другие показатели.

Пример 3: Загрязненность воздуха характеризуется концентрацией примесей — С (мг/м³). Единица измерения — массы примесей, содержится в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будет характеризовать числом хронических больных астмой, приходящихся на 1000 жителей данного города P (бол./тыс.)

Зависимость между величинами является полностью определенной.

Математические модели

Математические модели — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.

Математические модели отражают физические законы и представляются в виде формул:

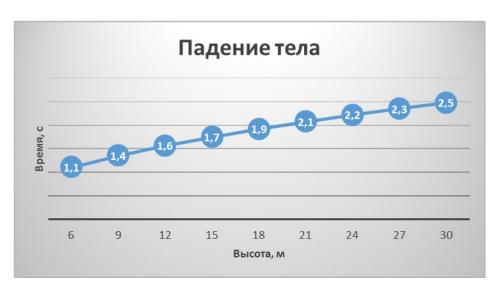
$$t = \frac{\sqrt{2H}}{g}$$

Корневая зависимость (время пропорционально квадратному корню высоты)

$$P = P_0 \left(1 + \frac{t}{273} \right)$$

Линейная зависимость

В сложных задачах математические модели представляют в виде уравнений или систем уравнений.


Табличные и графические модели

Экспериментальным путем проверим закон свободного падения тела

Эксперимент: стальной шарик сброшен с 6-метровой, 9-метровой высоты и т.д. (через 3 метра), замеряя высоту начального положения шарика и время падения

Результат эксперимента представлен в таблице и графике

Н, м	t, c
6	1,1
9	1,4
12	1,6
15	1,7
18	1,9
21	2,1
24	2,2
2 7	2,3
30	2,5

Табличное и графическое представление зависимости времени падения тела от высоты

Динамические модели

Информационные модели, которые описывают развитие систем во времени, имеют специальное название: **динамические модели**.

В физике это движение тел, в биологии – развитие организмов или популяций животных, В ХИМИИ протекание химических реакций.

Самое основное

• Величина – количественная характеристика исследуемого объекта.

- Характеристики величины:

 Имя отражает смысл величины

 Тип определяет возможные значения величин

 Значение: постоянная величина (константа) или
 переменная
- Функциональной зависимостью называется связь между двумя величинами, при которой изменение одной из них вызывает изменение другой.
- Существует три способа моделирования величин: функциональный (формула), табличный и графический

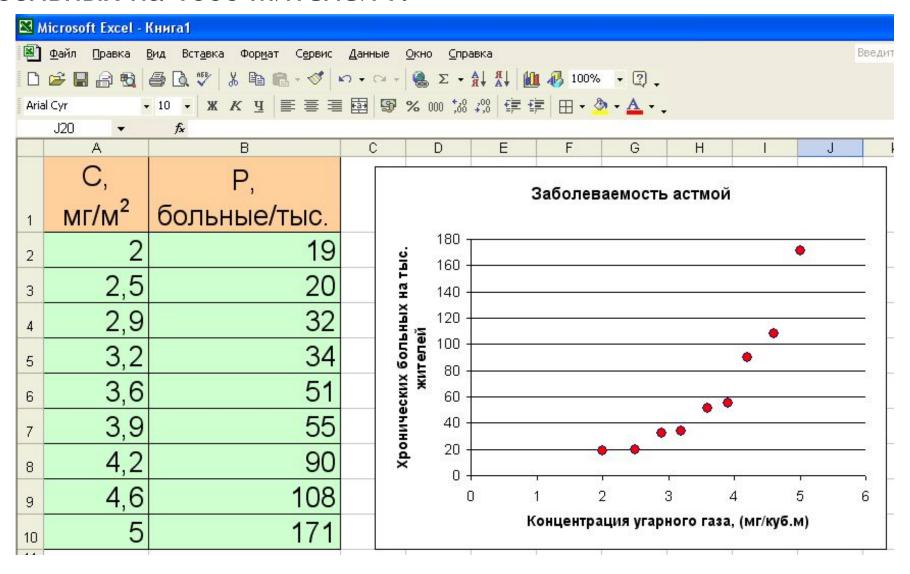
• Формула более универсальна; имея формулу, можно легко создать таблицу и построить график.

Описание развития систем во времени – динамическая модель.

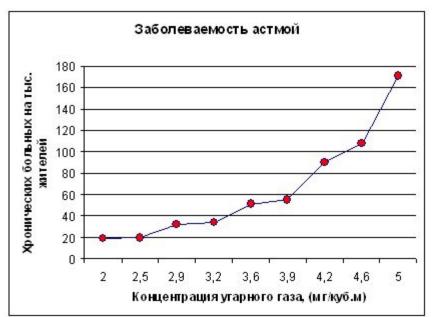
Статистика- наука о сборе, измерении и анализе массовых количественных данных

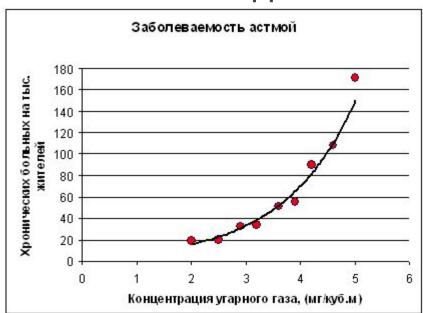
- медицинская статистика аппарат -
- экономическая статистика статистика
- социальная статистика ...

математический


математическая

Зависимости устанавливается экспериментальным путем:


- сбор данных
- анализ
- обощение



Сведения о средней концентрации угарного газа в атмосфере С и о заболеваемости астмой (число хронических больных на 1000 жителей Р.

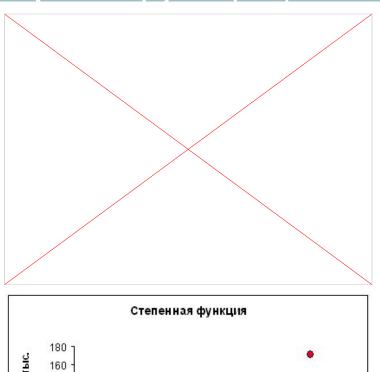
2 варианта построения графической зависимости по экспериментальным данным

Основные требования к искомой функции:

- она должна быть достаточно простой для использования ее в дальнейших вычислениях;
- -график функции должен проходить вблизи экспериментальных точек так, чтобы отклонения этих точек о графика были минимальны и равномерны.

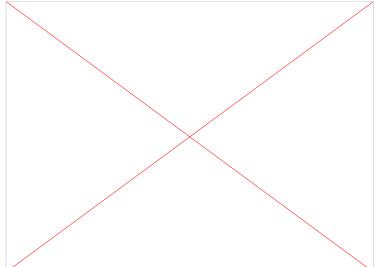
Полученная таким образом функция называется в статистике **регрессионной моделью**.

Два этапа получения регрессионной модели


1) подбор вида функции:

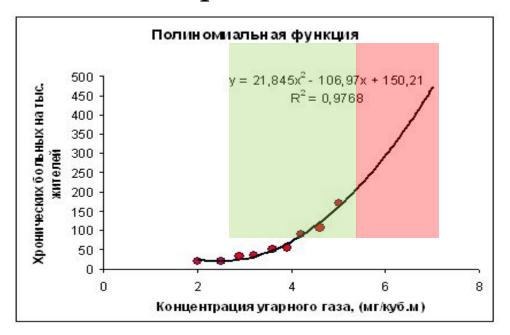
```
y = ax + b - линейная функция; y = ax^2 + bx + c - квадратичная функция (полиномиальная); y = a \ln(x) + b - логарифмическая функция; y = ae^{bx} - экспоненциальная функция; y = ax^b - степенная функция.
```

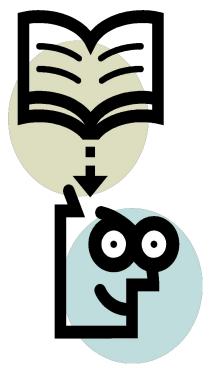
2) вычисление параметров функции:


метод наименьших квадратов - сумма квадратов отклонений укоординат всех экспериментальных точек от у-координат графика функции должна быть минимальной.

Графики функций, построенные по МНК, - тренды

 ${\bf R}^2$ - коэффициент детерминированности (от 0 до 1)


Алгоритм построения регрессионной модели по МНК с помощью MS Excel (линейный тренд)


- Ввести табличные данные зависимости заболеваемости ${f P}$ от концентрации угарного газа ${f C}$.
- Построить точечную диаграмму. (В качестве подписи к оси ОХ выбрать название тренда «Линейный», остальные надписи и легенду можно игнорировать).
- Щелкнуть мышью по полю диаграммы; выполнить команду **Диаграмма Добавить линию тренда**;
- В открывшемся окне на вкладке **Тип** выбрать **Линейный тренд**;
- Перейти на вкладку Параметры и установит галочки на флажках показывать уравнения на диаграмме и поместить на диаграмме величину достоверности ампроксикации R^2
- щелкнуть ОК.

Построение регрессионной модели по МНК с помощью MS Excel 2007 (линейный тренд)

Прогнозирование по регрессивной модели:

• **Восстановление значений** — прогноз в пределах экспериментальных значений независимой переменной.



• **Экстраполяция** – прогнозирование за пределами экспериментальных данных

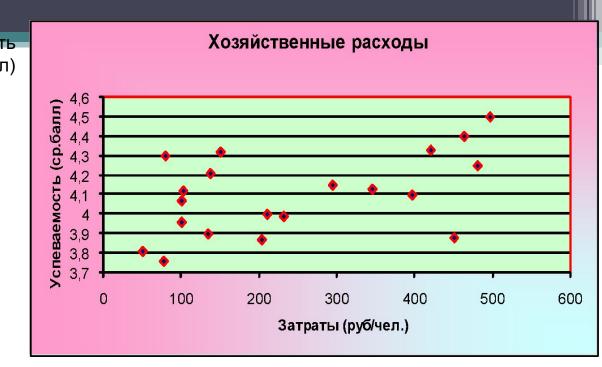
Корреляционная зависимость

 зависимость между величинами, каждая из которых подвергается не контролируемому полностью разбросу.

Корреляционный анализ —

Раздел математической статистики, который исследует корреляционные зависимости.

Изучает усреднённый закон поведения каждой из величин в зависимости от значений другой величины, а также меру такой зависимости.

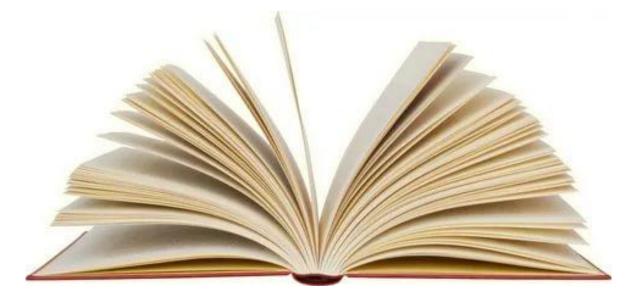


Какие задачи решает корреляционный анализ?

1. Определить, оказывает ли один фактор существенное влияние на другой фактор;

 Из нескольких факторов выбрать наиболее существенный.

	Затраты	Varanaavaa
№ п/п	(руб/ч ел.)	Успеваемост (ср. балл
1	50	3,81
2	345	4,13
3	79	4,3
4	100	3,96
5	203	3,87
6	420	4,33
7	210	4
8	137	4,21
9	463	4,4
10	231	3,99
11	134	3,9
12	100	4,07
13	294	4,15
14	396	4,1
15	77	3,76
16	480	4,25
17	450	3,88
18	496	4,5
19	102	4,12
20	150	4,32



Коэффициент корреляции (р) —

количественная мера корреляции двух величин.

- $-1 \le \rho \ge +1$;
- если lp l≈ 1, то корреляция сильная;
- если lp l≈ o, то корреляция слабая;
- значение ρ легко найти с помощью Excel.

Как вычислить коэффициент корреляции?

В MS Excel для определения коэффициента корреляции используется функция КОРРЕЛ из группы статистических функций.

Опт. планирование

Это определение значений плановых показателей с учетом ограниченности ресурсов при условии достижения заданной цели

ЗАДАЧА

Школьный кондитерский цех готовит пирожки и пирожные. В силу ограниченности условий можно приготовить не более 700 штук изделий. Рабочий день длится 8 часов. За день можно произвести не более 250 пирожных, пирожков – **1000** (по отдельности). Стоимость пирожного вдвое выше стоимости пирожка. Требуется составить такой дневной план производства, чтобы обеспечить наибольшую выручку.

Математическая модель

X – пирожков У- пирожных

Длительность рабочего дня — 8 часов Склад — на 700 мест

t - время на 1 пирожок 4t - на 1 пирожное tx+4ty = (x+4y)t (x+4y)t <=8*60 (x+4y)t <=480

480/1000 = 0,48 мин – на 1 пирожок

Математическая модель

$$(x+4y)t <= 480$$

 $t = 0.48$

```
Получим систему условий: x+4y<=1000 x+y<=700 — общее кол-во X>=0 Y>=0
```

Стратегическая цель

Требуется найти значения х и у, удовлетворяющих системе неравенств и придающих максимальное значение целевой функции

Получение максимальной выручки!
r- цена 1 пирожка
2r- цена 1 пирожного
rx +2ry = r(x+2y) – целевая функция
r=const, x+2y = max

Спасибо за внимание

