
Принципы кодирования графической информации

Цель:

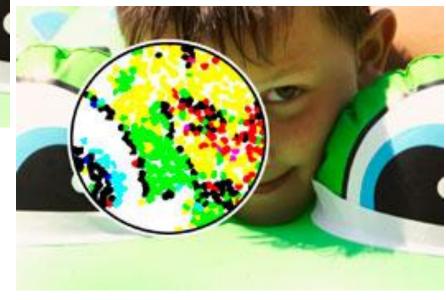
- Познакомиться со способами представления изображений и кодированием цветов в памяти компьютера.
- Изучить понятие объёма видеопамяти.
- Научиться решать задачи на определение объёма файлов изображений, занимаемых в видеопамяти.

Единицы измерения информации

Ответ: 231331

Графическая информация может быть представлена в аналоговой и дискретной форме

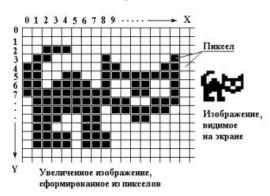
живописное полотно



цифровая фотография

Дискретное изображение состоит из отдельных точек

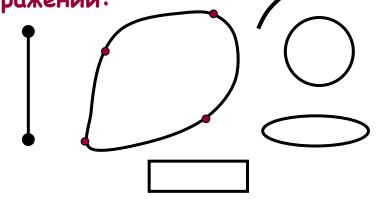
лазерный принтер


струйный принтер

1. Способы представления изображений

Растровый

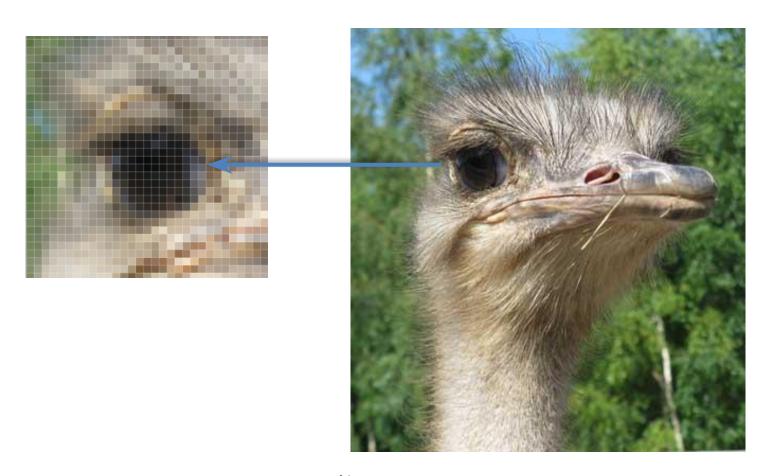
Векторный



Точка растра (пиксель)

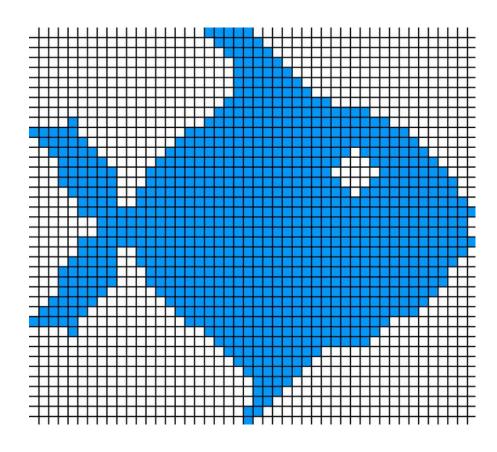
Положение (координата)

Цвет (в битах)

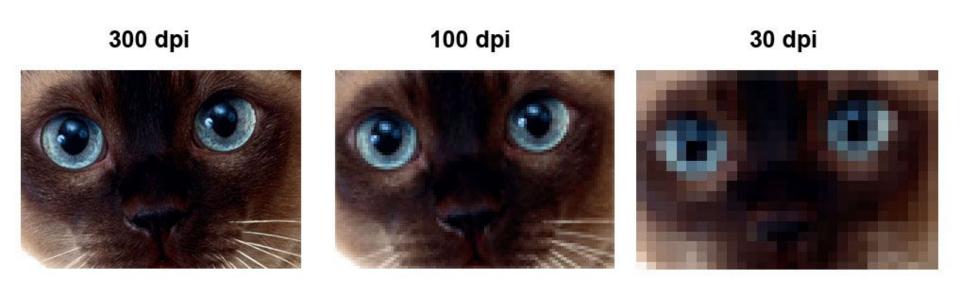

Графические примитивы

(вектора)

Несколько координат Геометрические характеристики


Кодируются математическими формулами

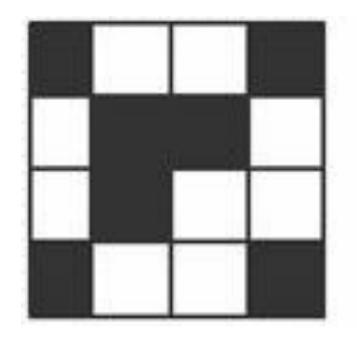
Пиксель - минимальный участок изображения, для которого независимым образом можно задать цвет.



В результате пространственной дискретизации графическая информация представляется в виде растрового изображения.

Разрешающая способность растрового изображения определяется количеством точек по горизонтали и вертикали на единицу длины изображения.

Чем меньше размер точки, тем больше разрешающая способность, а значит, выше качество изображения.


Величина разрешающей способности выражается в dpi (dot per inch – точек на дюйм), т.е. количество точек в полоске изображения длиной один дюйм (1 дюйм=2,54 см.)

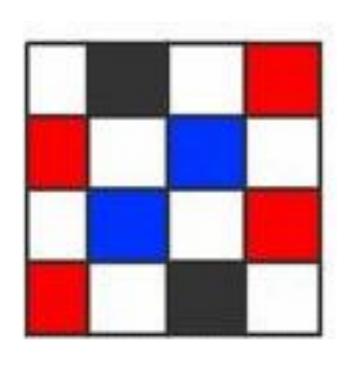
Помните!

Различие в представлении графической информации в растровом и векторном форматах существует лишь для файлов. При выводе на экран любого изображения в видеопамяти формируется информация, содержащая данные о цвете каждого пикселя экрана.

Вопрос:

Как кодируется цвет каждого пикселя?

0	1 1		0
1	0	0	1
1	0	1	1
0	1	1	0


Задание:

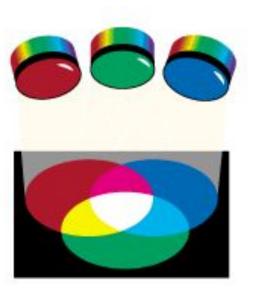
Декодируйте изображение

2. Кодирование цветов пикселей

```
Кодирование без полутонов
(белый - черный)
1 - белый
0 - черный
1 пиксель - 1 бит
```

2. Кодирование цветов пикселей

Для кодирования 4-х цветного изображений на 1 пиксель 2 бита


Например:

00 - черный 10 - синий

01 - красный 11 - белый

Цветовые модели

- · RGB
- · CMYK

Палитра цветов в системе цветопередачи RGB

Red

Eyan

Magenta

Blue

Yellow

С экрана монитора человек воспринимает цвет как сумму излучения трех базовых цветов (red, green, blue).

Цвет из палитры можно определить с помощью формулы:

$$\Box B = R + G + B,$$

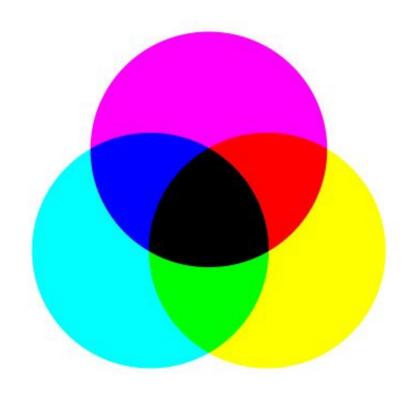
Где R, G, B принимают значения от 0 до \max

Двоичный код восьмицветной палитры

Красный	Зеленый	Синий	Цвет
0	0	0	Черный
0	0	1	Синий
0	1	0	Зеленый
0	1	1	Голубой
1	0	0	Красный
1	0	1	Пурпурный
1	1	0	Желтый
1	1	1	Белый

Информация 1 пикселя 1 бит 2 цвета - 2^{1} Информация 1 пикселя 2 бита **4** цвета – Информация 1 пикселя 3 бита 8 цветов – 2^3 Информация 1 пикселя 4 бита 16 цветов – Информация 1 пикселя 5 бит 32 цвета – Информация 1 пикселя N бит К цветов-

Количество различных цветов K и количество битов для их кодировки N связаны между собой формулой: $\mathbf{K} = \begin{bmatrix} 2^N \\ \end{bmatrix}$


N – битовая глубина

Пример:

Сколько бит необходимо для кодирования 256 цветов?

$$256 = 2^N \longrightarrow N=8$$
, т.е. глубина цвета (или битовая глубина равна 8 бит)

Палитра цветов в системе цветопередачи СМУК

В системе цветопередачи СМУК палитра цветов формируется путём наложения голубой, пурпурной, жёлтой и черной красок.

Формирование цветов в системе цветопередачи СМУК

Цвет		Формирование цвета	
Черный		Black = C + M + Y = W - G - B - R = K	
Белый		While = $(C = 0, M = 0, Y = 0)$	
Красный		Red = Y + M = W - G - B = R	
Зеленый		Green = Y + C = W – R – B = G	
Синий		Blue = M + C = W - R - G = B	
Голубой		$Cyan = \mathbf{C} = W - R = G + B$	
Пурпурный		<i>Magenta</i> = M = W – G = R + B	
Желтый		Yellow = Y = W - B = R + G	

Цвета в палитре СМУК формируются путем вычитания из белого цвета определенных цветов.

Система цветопередачи СМУК применяется в полиграфии.

со схемами для вязания

3. Объём видеопамяти

Страница изображения

Страница изображения

Страница изображения

Страница изображения-

раздел видеопамяти, вмещающий информацию об одном образе экрана (одной картинке на экране)

Видеопамять может размещать одновременно несколько страниц

Пример:

Какой объем видеопамяти необходим для хранения четырех страниц изображения при условии, что разрешающая способность дисплея равна 640 на 480 пикселей, а количество используемых цветов - 8?

$$V = 640x480x3x4=2^6x10x2^4x30x3x4=$$
= 3600x2¹⁰ бит=450 Кбайт

Задача:

Какой объем видеопамяти необходим для хранения одной страницы изображения при условии, что разрешающая способность дисплея равна 128 на 512 пикселей, а количество используемых цветов - 256?

 $V = 128x512x8x1=2^7x2^9x2^3=2^9x2^{10}$ бит=64 Кбайт

Тест

Домашнее задание

- §20, 21
- Закодировать цвета в изображении (карточка).