компьютерные сети

Основные понятия

Компьютерная сеть (Computer NetWork, net - сеть, и work - работа) - это система обмена информацией между компьютерами.

Основная цель: обеспечение пользователям потенциальной возможности доступа к локальным ресурсам всех компьютеров сети.

Требования

- Производительность
- Надежность и безопасность
- Расширяемость и масштабируемость
- Прозрачность и управляемость
- Совместимость (гетерогенность)

Компьютерные сети классифицируются по следующим признакам:

- степень географического распространения;
- масштаб производственного подразделения;
- способ управления;
- структура (топология) связей.

По степени географического распространения различают:

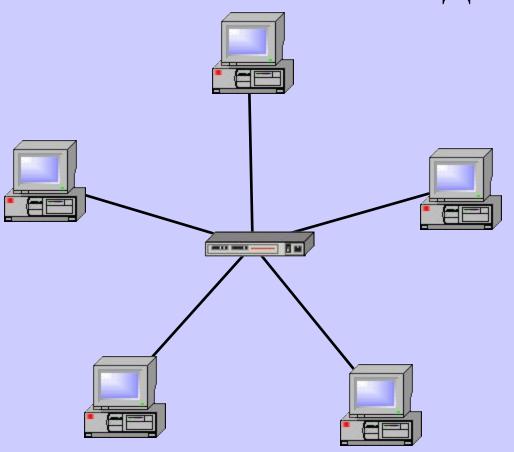
- локальные сети (Local Area Network, LAN);
- глобальные сети (Wide Area Network, WAN);
- городские сети (Metropolitan Area Network, MAN).

По масштабу производственного подразделения различают:

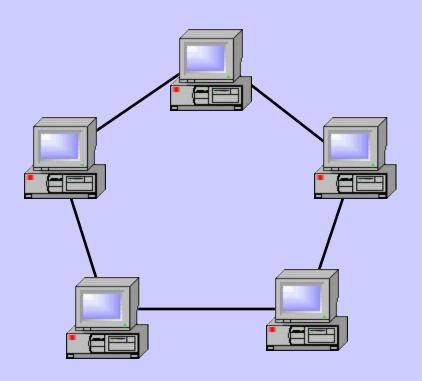
- сети отделов;
- сети кампусов;
- корпоративные сети.

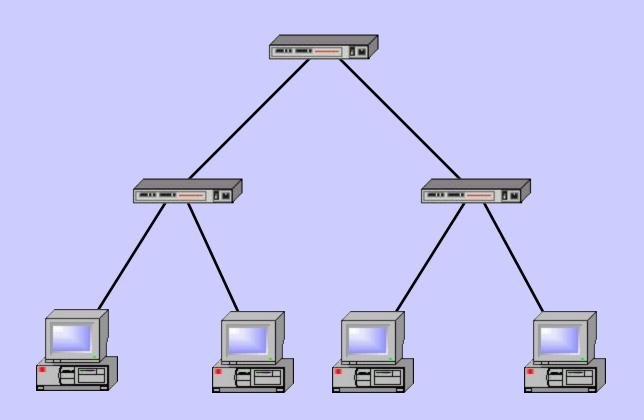
По способу управления различают:

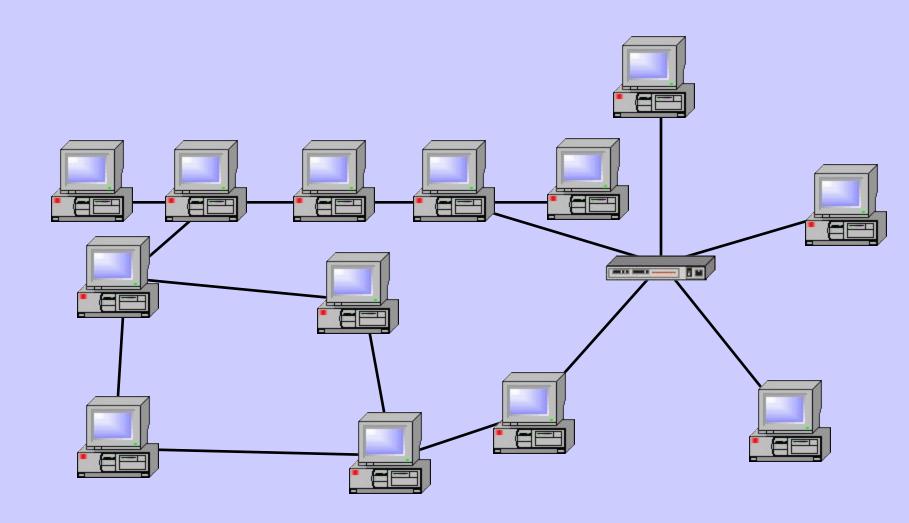
- сети «Клиент сервер»;
 - **Клиент** объект (компьютер или программа), запрашивающий некоторые услуги.
 - **Сервер** объект (компьютер или программа), предоставляющий некоторые услуги.
- одноранговые сети.


По топологии связей различают:

- сети с топологией «Общая шина»;
- сети с топологией «Звезда»;
- сети с топологией «Кольцо»;
- сети с древовидной топологией;
- сети со смешанной топологией.


Топология «Общая шина»


Топология «Звезда»

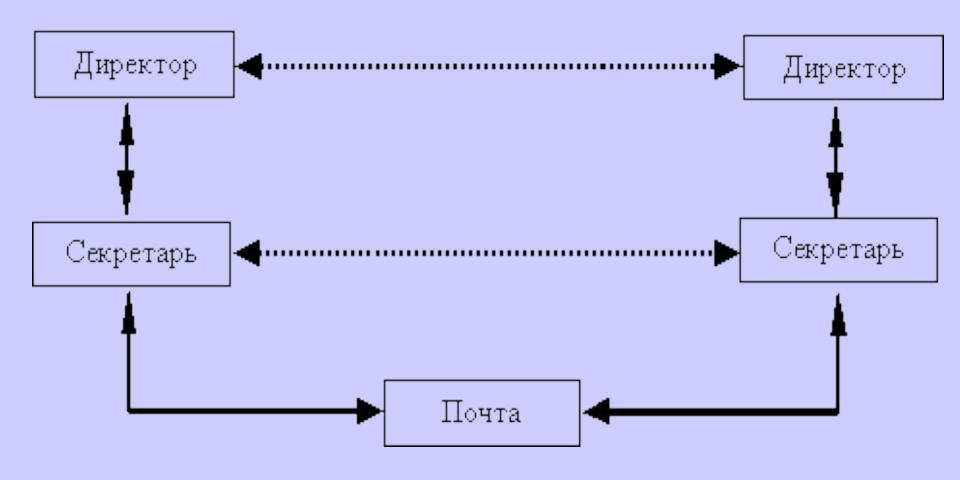

Топология «Кольцо»

Древовидная топология

Смешанная топология

Частные виды сетей

- Интернет это сообщество множества международных и национальных компьютерных сетей.
- Интранет внутренняя сеть организации, использующая стандарты, протоколы и технологии Интернет.
- Экстранет корпоративная Интранет.


Компоненты сети

- Компьютеры:
 - ПК; ноутбуки; мэйнфреймы.
- Коммуникационное оборудование:
 - коммутаторы; маршрутизаторы; линии связи.
- Операционные системы:
 - Windows; Novell NetWare; Unix.
- Сетевые приложения:
 - сетевой принтер; сетевой диск; базы данных.

Проблемы взаимодействия компьютеров в сети

- Согласование сигналов в линиях связи
- Определение правил доступа к среде передачи
- Согласование способов повышения надежности передачи информации
- Определение маршрута передачи информации и способов адресации

Многоуровневая модель взаимодействия систем

Основные определения

Протокол - это правила, определяющие взаимодействие между системами в рамках одного уровня.

Интерфейс - это набор функций, который нижележащий уровень предоставляет вышележащему.

Стек протоколов - это набор протоколов разных уровней, достаточный для организации взаимодействия систем.

Стек протоколов ТСР/ІР

- Уровень сетевого доступа
- Межсетевой уровень
- Транспортный уровень
- Уровень приложений

Уровень сетевого доступа

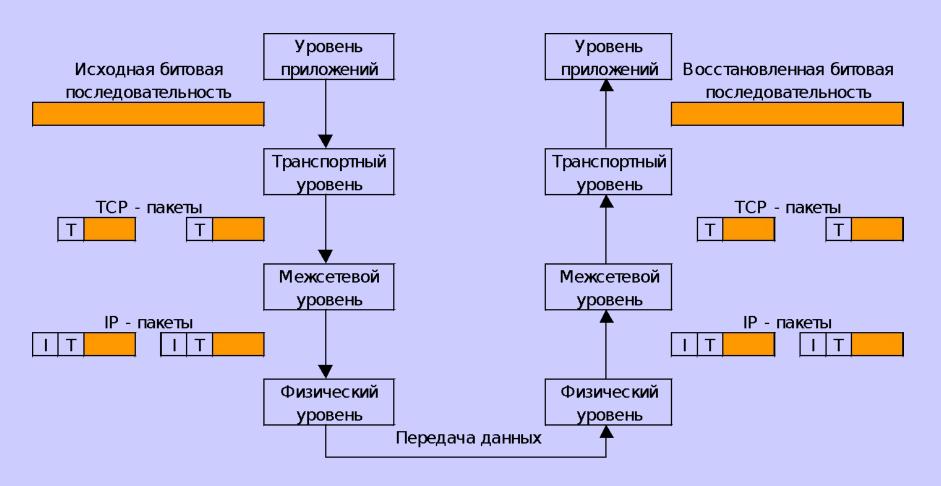
Уровень сетевого доступа (физический уровень) обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией или между двумя соседними узлами в сетях со смешанной топологией. Для идентификации узла назначения используется локальный (аппаратный) адрес компьютера (00:E0:29:78:96:FF). К физическому уровню относятся протоколы Ethernet, Token Ring, FDDI, SLIP, PPP, ATM, Frame Relay и другие.

Межсетевой уровень

На этом уровне определяются правила передачи данных между сетями. пакетов идентификации узла назначения используется числовой составной ІР-адрес (194.85.160.050), состоящий из двух частей: номера сети и номера узла в этой сети. Основным протоколом этого уровня является протокол IP (Internet Protocol межсетевой протокол), который определяет формат адресов и маршрут передачи.

Транспортный уровень

Этот уровень обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов. Основной протокол данного уровня ТСР (Transmission Control Protocol - протокол управления передачей)


Уровень приложений

На этом уровне определяются правила построения сетевых приложений (служб).

Сетевое приложение - это программа, которая состоит из нескольких частей и обеспечивает доступ к определенному типу ресурсов.

В стеке TCP/IP к уровню приложений относятся протоколы HTTP, FTP, SMTP, POP, Telnet.

Процесс преобразования данных

Т - Заголовок ТСР; І - Заголовок ІР.

Порт и сокет

Порт - это целое число, определяющее прикладной процесс запущенный на компьютере.

Сокет - совокупность IP-адресов и портов клиента и сервера, идентифицирующий TCP-соединение ТСР-соединение 1

Адрес клиента: 172.20.187.22 Адрес сервера: 10.12.45.56

Порт клиента: 1045 Порт сервера: 80

ТСР-соединение 2

Адрес клиента: 172.20.187.22 Адрес сервера: 10.12.45.56

Порт клиента: 1046 Порт сервера: 80

Сетевая технология

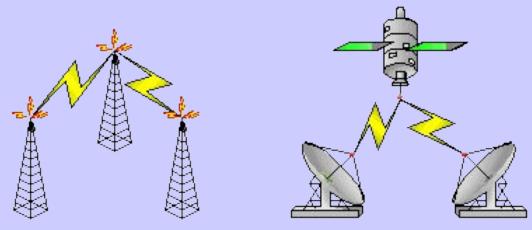
Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения компьютерной сети. Сетевые технологии:

- Ethernet;
- Token Ring.

Характеристики технологий Ethernet и Token Ring

Характеристика	Ethemet	Token Ring
Битовая скорость	10 Мбит/с	16 Мбит/с
Топология	Шина/Звезда	Звезда/Кольцо
Метод доступа	Случайный	Маркерный
Среда передачи данных	Коаксиал, витая	Витая пара,
	пара, оптоволокно	оптоволокно
Максимальная длина сети	2500 м	4000 м
Максимальное расстояние	2500 м	100 м
между узлами		
Максимальное количество	1024	260
узлов		

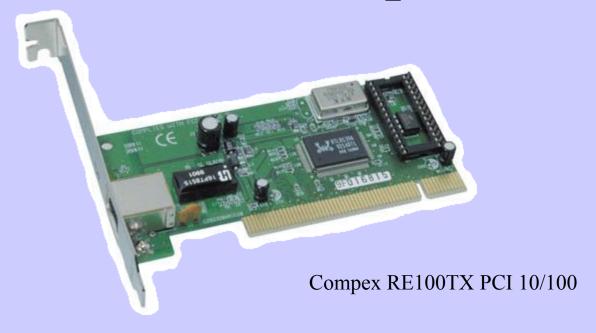
Оборудование компьютерных сетей


- Линия связи и интерфейсы
- Сетевая карта
- Трансивер (transceiver)
- Повторитель (Repeater)
- Концентратор (Hub)
- Mocт (Bridge)
- Kommytatop (Switch)
- Маршрутизатор (Router)

Линии связи

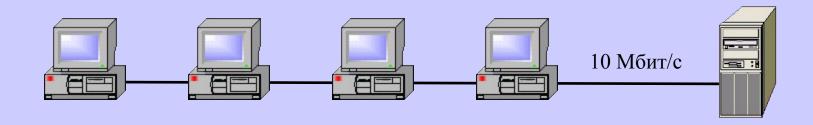
Кабельные линии связи

Беспроводные линии связи


Интерфейсы

Интерфейс RJ-45

Интерфейс BNC



Сетевая карта

Сетевая карта воспринимает команды и данные от сетевой операционной системы, преобразует эту информацию в один из стандартных форматов и передает ее в сеть через подключенный к карте кабель. Каждая карта имеет уникальный номер.

Пример архитектуры сети на коаксиальном кабеле

Технология: Ethernet 10 Мбит/с

Среда передачи: Коаксиал

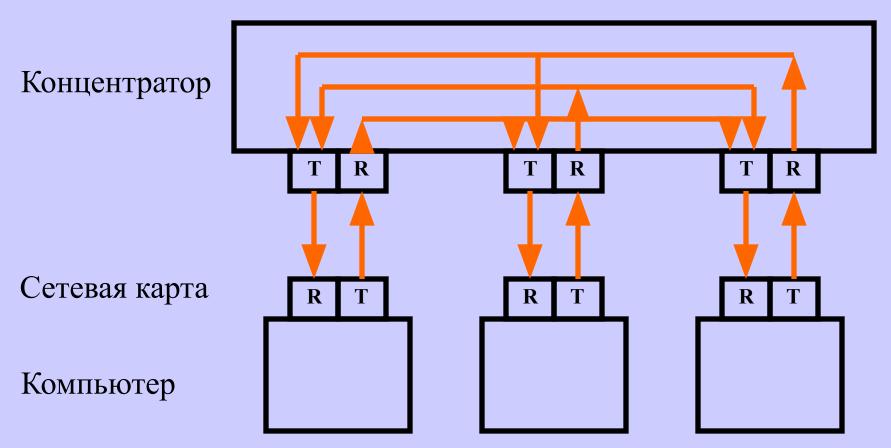
Трансивер

Трансивер устанавливается непосредственно на кабеле и питается от сетевой карты компьютера. С сетевой картой трансивер соединяется интерфейсным кабелем AUI (Attachment Unit Interface).

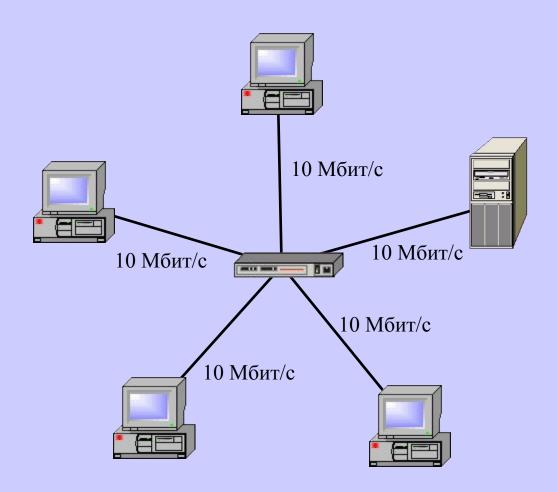
Повторитель

ER-200

Повторители соединяют сегменты, использующие одинаковые или разные типы носителя, восстанавливают сигнал, увеличивая дальность передачи, передают информацию в обоих направлениях. Использование повторителя позволяет расширить сеть, построенную с использованием коаксиального кабеля.


Концентратор

MicroHub TP1008C


Концентратором называется повторитель, который имеет несколько портов и соединяет несколько физических линий связи. Концентратор всегда изменяет физическую топологию сети, но при этом оставляет без изменения ее логическую топологию. Если на какой-либо его порт поступает сообщение, он пересылает его на все остальные.

Пример концентратора с тремя портами

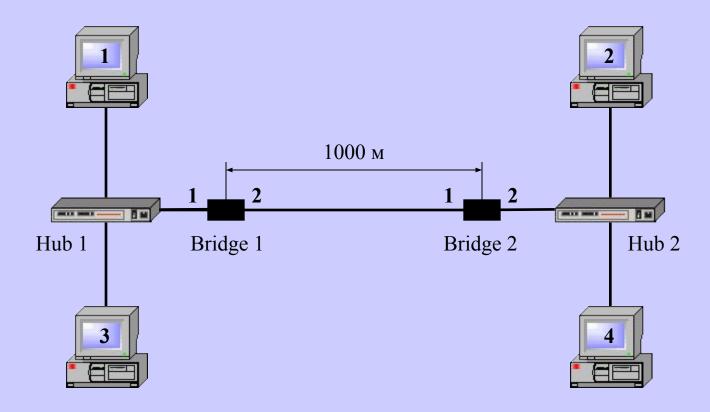
Обозначение: Т-передатчик; R-приемник

Пример сети на концентраторе

Технология: Ethernet 10 Мбит/с

Среда передачи: Витая пара

Мост

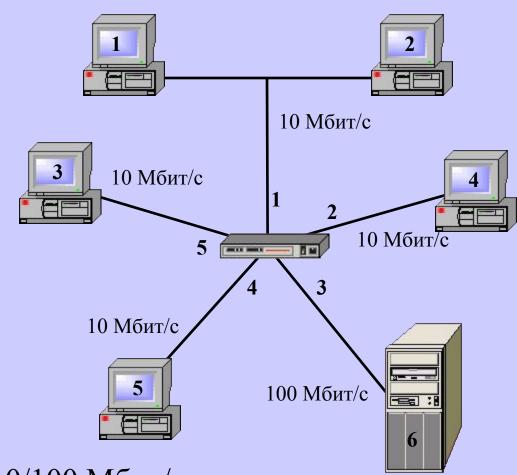


TinyBridge

Мост делит физическую среду передачи сети на части, передавая информацию из одного сегмента в другой только в том случае, если адрес компьютера назначения принадлежит другой подсети.

Пример использования моста

Узел	Порт
1	1
2	2
3	1
4	2

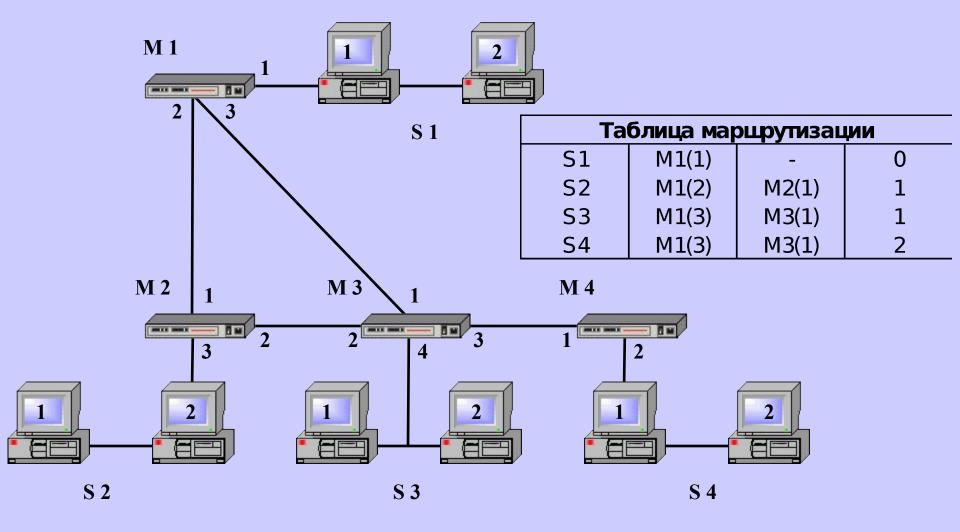

Коммутатор

Коммутатор по назначению не отличается от моста, но обладает более высокой производитель-ностью так, как мост в каждый момент времени может осуществлять передачу кадров только между одной парой портов, а коммутатор одновременно поддерживает потоки данных между всеми своими портами

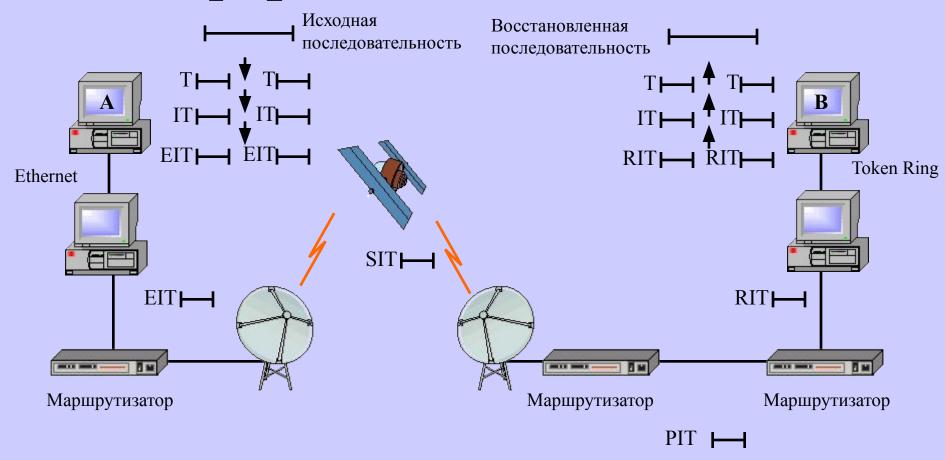
Пример использования коммутатора


Узел	Порт
1	1
2	1
3	5
4	2
5	4
6	3

Технология: Ethernet 10/100 Мбит/с


Среда передачи: Коаксиал/Витая пара

Маршрутизатор



Маршрутизатор делит физическую среду передачи сети на части более эффективно, чем мост или коммутатор. Он может пересылать пакеты на конкретный адрес, выбирать лучший путь для прохождения пакета и многое другое. Чем сложней и больше сеть, тем больше выгода от использования маршрутизаторов.

Пример использования маршрутизатора

Процесс прохождения информационного пакета

- Т Заголовок ТСР; I Заголовок IP
- Е Заголовок Ethernet; S Заголовок радио-пакета
- Р Заголовок пакета РРР; R Заголовок Token Ring

Правила работы в сети

login: c[1...4]u[1...10]

password: c[1...4]u[1...10]fio

Имя ком-ра: c[1...4]ws[1...10]

E-mail: c[1...4]u[1...10]@fio.ifmo.ru

POP3: fio.ifmo.ru

SMTP: fio.ifmo.ru

Web -сайт: http://fio.ifmo.ru/c[1...4]wu[1...10]

FTP: ftp://fio.ifmo.ru

login: c[1...4]wu[1...10]

password: c[1...4]wu[1...10]http

Учебный Web-сайт: http://fio.ifmo.ru/internet