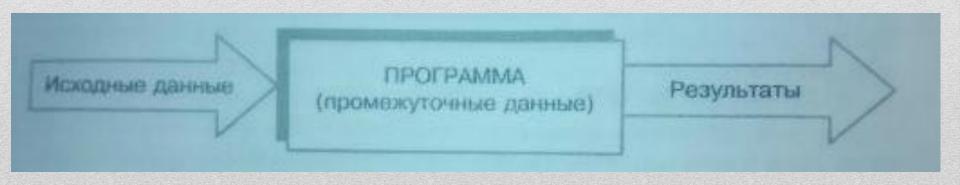
# 

- Этапы решения задач на компьютере
- 1. Постановка задачи
- 2. Формализация задачи
- 3. Построение алгоритма
- 4.Составление программы на языке программирования.
- 5. Отладка и тестирование программы.
- 6. Проведение расчетов и анализ полученных результатов.

Таким образом, программист должен обладать следующими знаниями и навыками:


- уметь строить алгоритмы;
- знать языки программирования;
- уметь работать в соответствующей системе программирования.

• Алгоритм – это последовательность команд управления каким-либо исполнителем.

• В разделе «программирование» изучаются методы программного управления работой компьютера. В качестве исполнителя выступает компьютер. Он работает с величинами — различными информационными объектами: числами, символами, кодами. Поэтому алгоритмы, предназначенные для управления компьютером, принято называть алгоритмами работы с величинами.

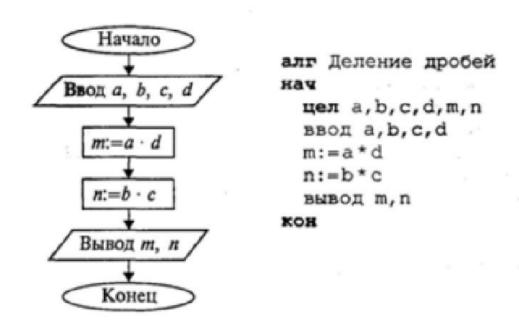
### Данные и величины

• Совокупность величин, с которыми работает компьютер, называются данными



- Всякая величина занимает определенное место в памяти компьютера. Определенную ячейку памяти.
- У всякой величины имеются три основных свойства: имя, значение и тип.
- В алгоритмах и языках программирования величины делятся на константы и переменные.

• Константа - неизменная величина, и в алгоритме она представляется собственным значением, например: 15, 35.7, "k", true.


## Типы величин — типы данных.

• В любой язык входит минимально необходимый набор основных типов данных к которым относятся целый, вещественный, логический и символьный типы.

| Тип               | Значения                                                                                      | Операции                                                                                                                  | Внутреннее представле-<br>ние                                          |
|-------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Целый             | Целые положительные и отрицательные числа в некотором диапазоне. Примеры: 23, -12, 387        | Арифметические операции с целыми числами: +, -, ·, целое деление и остаток от деления. Операции отношений (<, >, = и др.) | Формат с фиксирован-<br>ной точкой                                     |
| Вещест-<br>венный | Любые (целые и дробные) числа в некотором диапа-<br>зоне. Примеры: 2,5,-0,01, 45,0, 3,6 · 109 | Арифметические операции: +, -, ·, /. Операции отношений                                                                   | Формат с<br>плавающей<br>точкой                                        |
| Логичес-<br>кий   | True (истина),<br>False (ложь)                                                                | Логические опера-<br>ции: И (and), ИЛИ<br>(ог), НЕ (not).<br>Операции отношений                                           | 1 бит:<br>1 — true;<br>0 — false                                       |
| Символь-<br>ный   | Любые символы компьютерного алфавита. Примеры: 'a', '5', '+', '\$'                            | Операции отношений                                                                                                        | Коды табли-<br>цы символь-<br>ной кодиров-<br>ки. 1 символ —<br>1 байт |

- Есть еще один вариант классификации данных: классификация по структуре. Данные делятся на простые и структурированные.
- Компьютер это исполнитель алгоритмов.
- Как известно, всякий алгоритм (программа) составляется для конкретного исполнителя, в рамках его системы команд.

Исходными данными являются целочисленные переменные a, b, c, d. Результатом — также целые величины тип. Блок-схема и текст алгоритма на учебном алгоритмическом языке приведены ниже (в дальнейшем для краткости будем обозначать учебный алгоритмический язык буквами АЯ).



#### Формат команды присваивания следующий:

#### переменная:-выражение

Знак «:=» нужно читать как «присвоить».

Команда присваивания обозначает следующие действия, выполняемые компьютером:

- 1. Вычисляется выражение.
- 2. Полученное значение присваивается переменной.

В приведенном выше алгоритме присутствуют две команды присваивания. В блок-схемах команда присваивания записывается в прямоугольнике. Такой блок называется вычислительным блоком.

В приведенном алгоритме присутствует команда ввода:

ввод a,b,c,d

В блок-схеме команда ввода записывается в параллелограмме — блоке ввода-вывода. При выполнении данной команды процессор прерывает работу и ожидает действий пользователя. Пользователь должен набрать на устройстве ввода (клавиатуре) значения вводимых переменных и нажать на клавишу ввода Enter. Значения следует вводить в том же порядке, в каком соответствующие переменные расположены в списке ввода

Полученные компьютером результаты решения задачи должны быть сообщены пользователю. Для этих целей предназначена команда вывода:

вывод m,n

С помощью этой команды результаты выводятся на экран или на устройство печати на бумагу.