
IMPLEMENTING IOE

Assist. Prof. Rassim Suliyev - SDU 2017Week 2

What is Arduino?

Physical Device IDE Community

http://www.arduino.cc

Arduino Philosophy and Community

◻ Open Source Physical Computing Platform
� “open source hardware”
� open source: free to inspect & modify
� physical computing

■ ubiquitous computing

■ pervasive computing

■ ambient intelligence

■ calm computing

■ Spimes

■ Blogjects

■ smart objects

◻ Community-built
� Examples wiki (the “playground”) editable by anyone
� Forums with lots of helpful people

Arduino Hardware

◻ Similar to Basic Stamp (if you know of it)
� but cheaper, faster, & open

◻ Uses AVR ATmega328 microcontroller chip
� chip was designed to be used with C language

◻ The designer of the AVR purposefully arranged its registers and instruction set so that C
programs would compile efficiently on it. This is a big deal, compared to previous
microcontrollers where C programs were almost always less efficient than a hand-coded
assembly language variant.

$20 $70$2 $50

Arduino Hardware Variety

◻ Openness has its advantages, many different varieties.
◻ Anyone can build an Arduino work-alike in any form-factor they want

Arduino Capabilities

◻ 16 kBytes of Flash program memory
◻ 1 kByte of RAM
◻ 16 MHz (Apple II: 1 MHz)
◻ Inputs and Outputs

� 14 digital input/output pins
� 6 analog input pins
� 6 analog output pins (pseudo-analog, uses PWM ,

which we’ll talk about later)
◻ Completely stand-alone: doesn’t need a computer once

programmed

* Don’t worry if the above doesn’t make sense, you don’t
really need to know it.

Arduino Types Comparison

Name Processor Operating /
Input Voltage

CPU
Speed

Analog
In/Out Digital IO / PWM EEPROM

[KB] SRAM [KB] Flash
[KB] UART

Ethernet ATmega328P 5 V / 7-12 V 16 MHz 6/0 14/4 1 2 32 -

Leonardo ATmega32U4 5 V / 7-12 V 16 MHz 12/0 20/7 1 2.5 32 1

LilyPad ATmega328P 2.7-5.5 V 8
MHz 6/0 14/6 0.512 1 16 -

Mega ADK ATmega2560 5 V / 7-12 V 16 MHz 16/0 54/15 4 8 256 4

Micro ATmega32U4 5 V / 7-12 V 16 MHz 12/0 20/7 1 2.5 32 1

Mini ATmega328P 5 V / 7-9 V 16 MHz 8/0 14/6 1 2 32 -

Nano ATmega328P 5 V / 7-9 V 16 MHz 8/0 14/6 1 2 32 1

Uno ATmega328P 5 V / 7-12 V 16 MHz 6/0 14/6 1 2 32 1

Yun AR9331 Linux 5 V 400MH
z 12/0 20/7 1 16MB 64 MB 1

Zero ATSAMD21G18 3.3 V / 7-12 V 48 MHz 6/1 14/10 - 32 256 2

Arduino Uno

Microcontroller ATmega328
Operating Voltage 5V
Input Voltage (recom) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (6 PWM)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 32 KB (0.5 KB bootloader)
SRAM 2 KB
EEPROM 1 KB
Clock Speed 16 MHz
Length 68.6 mm
Width 53.4 mm
Weight 25 g

Arduino Terminology

◻ “sketch” – a program you write to run on an
Arduino board

◻ “pin” – an input or output connected to something.
e.g. output to an LED, input from a knob.

◻ “digital” – value is either HIGH or LOW. (aka
on/off, one/zero) e.g. switch state

◻ “analog” – value ranges, usually from 0-255. e.g.
LED brightness, motor speed, etc.

Arduino Software

◻ Like a text
editor

◻ View/write/e
dit sketches

◻ But then you
program them
into hardware

Installing Arduino

1. Get the Arduino software & unzip it
2. Plug in Arduino board
3. Install the driver
4. Reboot
5. Run the Arduino program
6. Tell Arduino (program) about Arduino (board)

Plug in Arduino board

Windows Driver Install

Mac Driver Install

Selecting Location & Type

usually highest numbered port

starts with tty.usbserial

Arduino IDE

Using Arduino

◻ Write your sketch

◻ Press Compile button (to check
for errors)

◻ Press Upload button to program
Arduino board with your sketch

◻ Try it out with the “Blink” sketch!

◻ Load
“File/Examples/Basics/Blink”

Status Messages

Troubleshooting

◻ Most common problem is incorrect serial port setting

◻ If you ever have any “weird” errors from the
Arduino environment, just try again.

◻ The red text at the bottom is debugging output in
case there may be a problem

◻ Status area shows summary of what’s wrong

I made an LED blink, so what?

◻ Most actuators are switched on and off with a
digital output

◻ The digitalWrite() command is the software portion
of being able to control just about anything

◻ LEDs are easy, motors come in a bit

◻ Arduino has up to 13 digital outputs, and you easily
can add more with helper chips

Development Cycle

◻ Make as many changes as you want

◻ Not like most web programming: edit ➝ run

◻ Edit ➝ compile ➝ upload ➝ run

Lots of Built-in Examples

And all over the Net. Search for “Arduino tutorial” or “Arduino notes” or whatever you’re interested in and “Arduino”
and likely you’ll find some neat pages.

And more here:
http://www.arduino.cc/en/Tutorial/HomePage

Proteus ISIS Simulation System

◻ Proteus is a CAD (Computer Aided Design) type
software package

◻ It combines the two main programs:
� ISIS – is a program for developing and debugging electronic

circuits in real-time mode
� ARES – PCB (Printed Circuit Board) design tool

Proteus Menu and Navigation

Creating a Circuit on Proteus

Connecting Elements

Simulation

Installing Arduino Library for Proteus

◻ For Windows XP

Copy file BLOGEMBARCADO.LIB into:
C:\Program Files\Labcenter Electronics\Proteus 8 Professional\Data\LIBRARY

◻ For Windows 7 and later

Copy file BLOGEMBARCADO.LIB into:
C:\ProgramData\Labcenter Electronics\Proteus 8 Professional\LIBRARY

Loading the compiled file to Proteus

◻ File –> Preferences -> Show verbose output during compilation

Loading the compiled file to Proteus

Select and copy the location of .hex file

Loading the compiled file to Proteus

Paste the location of .hex file here

Double click

Useful Links

◻ http://arduino.cc/
Official homepage. Also check out the Playground & forums
◻ http://arduino.ru/
Lots of useful information about Arduino and programming language on Russian

language
◻ http://arduino-project.net/videouroki-arduino-arduino4life/
Arduino video tutorials
◻ http://adafruit.com/
Arduino starter kits, Boarduino Arduino clone, lots of cool kits
◻ http://sparkfun.com/
Sells Arduino boards and lots of neat sensors & stuff
◻ Books:

� “Arduino cookbook”, Michael Margolis
� “Arduino programming notebook”, Brian W. Evans
� “Getting started with Arduino”, Massimo Banzi

Some Common Commands

◻ Serial.println(value);
Prints the value to the Serial Monitor on your computer

◻ pinMode(pin, mode);
Configures a digital pin to read (input) or write (output) a digital value

◻ digitalRead(pin);
Reads a digital value (HIGH or LOW) on a pin set for input

◻ digitalWrite(pin, value);
Writes the digital value (HIGH or LOW) to a pin set for output

◻ delay(value)
Stops the program execution for amount of milliseconds given by value

Hidden Treasure

int main(void)
{
 init(); // initializes the Arduino hardware
 setup();
 for (;;)
 loop();
 return 0;
}

Tasks

◻ Blinking LED on 12th pin

◻ 3 LEDs blink by order (interval - 1s)

◻ Traffic lights (Rd-5s, Yl-1s, Gr-5s, Yl-1s …)

◻ 3 LEDs binary counter (0-7)

◻ 4 LED ripple

Arduino data types

Flow control

do{ // assign readSensors value to x
 x = readSensors();
 delay (50); // pauses 50 milliseconds
} while (x < 100); // loops if x is less than 100

while (someVariable < 200){ //if less than 200
 doSomething; // executes enclosed statements
 someVariable++; // increments variable by 1
}

for(j=0; j < 4; j++){
 Serial.println(j);
}

if (inputPin < 500){
 doThingA;
}
else if (inputPin >= 1000){
 doThingB;
}
else{
 doThingC;
}

1. if
if(expression){ //if expression is true
 doSomething;
}

2. if… else
if(inputPin == HIGH){
 doThingA;
} else{
 doThingB;
}

3. for
for (initialization; condition; expression){
 doSomething;
}

4. while
while (expression){
 doSomething;
}

5. do… while
do {
 doSomething;
} while (expression);

Using Floating-Point Numbers

float value = 1.1;
void setup(){
 Serial.begin(9600);
}
void loop(){
 value = value - 0.1;
 //reduce value by 0.1 each time through the loop
 if(value == 0)
 Serial.println("The value is exactly zero");
 else if(fabs(value) < .0001)
 //function to take the absolute value of a float
 Serial.println("The value is close enough to zero");
 else
 Serial.println(value);
 delay(100);
}

OUTPUT:
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
The value is close enough
to zero
-0.10
-0.20

This is because the only memory-efficient way that floating-point numbers can contain the huge
range in values they can represent is by storing an approximation of the number.
The solution to this is to check if a variable is close to the desired value.

Arrays

◻ Arrays are zero indexed, with the first value in the array beginning at index number
0. An array needs to be declared and optionally assigned values before they can
be used.

int myArray[] = {value0, value1, value2...}

◻ Likewise it is possible to declare an array by declaring the array type and size and
later assign values to an index position

int myArray[5]; // declares integer array with 5 positions
myArray[3] = 10; // assigns the 3rd index the value 10

◻ To retrieve a value from an array, assign a variable to the array and index position:

first = myArray[0]; // this is the first element
last = myArray[4]; // this is the last element

Tasks with arrays and loops

◻ 3 LEDs blink by order (interval - 1s)

◻ Traffic lights (Rd-5s, Yl-1s, Gr-5s, Yl-1s …)

◻ 3 LEDs binary counter (0-7)

◻ 4 LED ripple

