
ASP.NET MVC 5. Part 1

Overview. Controllers. Views.

2014-11-25 by O. Shvets
Reviewed by O. Konovalenko

2

Agenda

● ASP.NET Architecture
● ASP.NET MVC 3, 4, 5
● Controllers
● Views

3

MVC Pattern

● Controller – application logic.
Communicate with user. It
receives and handles user
queries, interrupts with Model,
and returns results by View
objects

● Model – contains classes that
represent data, performs
operations with data-bases and
organizes relations between
data-classes.

● View – performs UI
representation. Works with model.

4

ASP.NET Architecture

5

Lifecycle of an ASP.NET MVC 5
Application

6

Benefits of ASP.NET MVC

● Higher quality requirements
o Test Driven Development

● Cross platforms support
o Windows, PDA, IPhone, …

● HTML code control
● Clear ULR navigation

o http://musica.ua/groups/metallica
● Maintainable code and command work

7

What’s new in ASP.NET MVC 3

● Extensible Scaffolding with MvcScaffold integration
● HTML 5 enabled project templates
● The Razor View Engine
● Support for Multiple View Engines
● Controller Improvements
● JavaScript and Ajax
● Model Validation Improvements
● Dependency Injection Improvements

8

What’s new in ASP.NET MVC 4

● ASP.NET Web API
● Enhancements to Default Project Templates
● Mobile Project Template and Empty Project Template
● jQuery Mobile, the View Switcher, and Browser Overriding
● Task Support for Asynchronous Controllers
● Azure SDK
● Database Migrations
● Add Controller to any project folder
● Bundling and Minification
● Enabling Logins from Facebook and Other Sites Using

OAuth and OpenID

9

What’s new in ASP.NET MVC 5

● One ASP.NET project template
● ASP.NET Identity
● Bootstrap
● Authentication filters
● Filter overrides
● Attribute routing

10

What’s new in ASP.NET MVC 5.1 & 5.2

● New Features in ASP.NET MVC 5.1
o Attribute routing improvements
o Bootstrap support for editor templates
o Enum support in views
o Unobtrusive validation for MinLength/MaxLength Attributes
o Supporting the ‘this’ context in Unobtrusive Ajax

● New Features in ASP.NET MVC 5.2
o Attribute routing improvements

11

Create ASP.NET MVC 5 Application

12

Adding a Controller

13

Our New HelloWorldController

14

The App_Start/RouteConfig.cs File

15

Welcome Method with Parameters

16

Matching the Route Parameter

17

Passing Parameters As Route Data

● In ASP.NET MVC applications, it's more typical to pass in
parameters as route data than passing them as query
strings

18

URL Route Mapping Features

● You can include "-", ".", ";" or any other characters you want
as part of your route rules
o This would pass appropriate "language", "locale", and "category"

parameters to a ProductsController:
{language}-{locale}/products/browse/{category}
/en-us/products/browse/food
language=en, locale=us, category=food

o You can use the "." file extension type at the end of a URL to
determine whether to render back the result in either a XML or
HTML format
products/browse/{category}.{format}
/products/browse/food.xml category=food, format=xml
/products/browse/food.html category=food, format=html

19

Adding a View

20

The View

21

Layout Page

22

Layout Page

● The layout has access to the same properties the Razor
view has, including:
o AjaxHelper (through the Ajax property)
o HtmlHelper (through the Html property)
o ViewData and model
o UrlHelper (through the Url property)
o TempData and ViewContext

● To specify a layout inside a view, we can specify the layout
to use with the Layout property:

@{
Layout = "~/Views/Shared/_Layout.cshtml";

}

23

Razor View Engine

● an alternative to the Web Forms view engine
● is responsible for rendering views in the Razor format

(either .cshtml files or .vbhtml files)
o The Web Form view engine is used to support the older-format

Web Form views (.aspx and .ascx files)

Web Forms view engine example:
<%@ Page Language="C#"
Inherits="System.Web.Mvc.ViewPage<Product[]>" %>

<% foreach(var product in Model) { %>
 <%: product.Name %>
<% } %>

Razor view engine example
@model Product[]

@foreach(var product in Model) {
 @product.Name
}

24

The Fundamentals of the Razor Syntax

● ‘@’ is the magic character that precedes code instructions
in the following contexts
o ‘@’ For a single code line/values

o ‘@{ … }’ For code blocks with multiple lines

o ‘@:’ For single plain text to be rendered in the page

<p>
Current time is: @DateTime.Now

</p>

@{
var name = “John”;
var nameMessage = "Hello, my name is " + name + " Smith";

}

@{
@:The day is: @DateTime.Now.DayOfWeek. It is a great day!

}

25

The Fundamentals of the Razor Syntax

● HTML markup lines can be included at any part of the code:

● Razor uses code syntax to infer indent:

@if(IsPost){
<p>Hello, the time is @DateTime.Now and this
page is a postback!</p>

} else {
<p>Hello, today is: </p> @DateTime.Now

}

// This won’t work in Razor. Content has to be
// wrapped between { }
if(i < 1) int myVar=0;

26

Passing Data to the View

● There are three different ways to pass data to a view:
o by using the ViewDataDictionary,
o by using the ViewBag,
o by using strongly typed views.

27

ViewDataDictionary

● It isn’t recommended to use ViewDataDictionary
o You have to perform type casts whenever you want to retrieve

something from the dictionary.

28

ViewBag

● It isn’t recommended to use ViewBag
● The ViewBag provides a way to pass data from the

controller to the view
o It makes use of the dynamic language features of C# 4

● Set properties on the dynamic ViewBag property within
your controller:

● A ViewBag property is also available in the view:

29

Strongly Typed Views

● Views can inherit from two types by default:
o System.Web.Mvc.WebViewPage or
o System.Web.Mvc.WebViewPage<T>

● Class WebViewPage<T> provides a strongly typed wrapper
over ViewData.Model through the Model property and
provides access to strongly typed versions of the
associated view helper objects - AjaxHelper and
HtmlHelper

30

Adding a Model

31

Passing Model to the View

● By specifying the model type using the @model keyword,
view will inherit from WebViewPage<T> instead of
WebViewPage, and we will have a strongly typed view

public ActionResult Index()
{

//…
SomeModel model = new SomeModel();
return View(model);

}

<dl>
<dt>Name:</dt>
<dd>@Model.Name</dd>
<dt>Date Added:</dt>
<dd>@Model.DateAdded</dd>
<dt>Message:</dt>
<dd>@Model.Message</dd>
</dl>

32

● Partials are intended to render snippets of content
● If you find yourself copying and pasting one snippet of

HTML from one view to the next, that snippet is a great
candidate for a partial

● To render a partial we can use the RenderPartial method or
the Partial method in a parent view

33

Partial Views

● The partial name is used to locate the partial markup in the
locations:
o <Area>\<Controller>\<PartialName>.cshtml
o <Area>\Shared\<PartialName>.cshtml
o \<Controller>\<PartialName>.cshtml
o \Shared\<PartialName>.cshtml

● In order to prevent accidentally using a partial view from an
action, we prefix the view name with an underscore

● Html.RenderPartial(...) renders the partial immediately to
the response stream

● Html.Partial(...) returns a string
o In Razor, Html.RenderPartial must be in a code block

34

?

Questions ?

