
GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Types of translator

evaluate the advantages and
disadvantages of compilers and
interpreters

Learning objectives

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Introduction

CPUs are very impressive but they are actually
quite simple when it comes to processing.

They can only process 1’s and 0’s.

They therefore do not understand how to
process programming code in the form in
which we write it .

So what has to happen to get our code into a
form that the CPU can work with…?

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

From Our Brain to the CPU…

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Difference between high level and low level сode

Machine Code (Very Low Level Language)

The CPU can only understand one type
of code: Machine Code

Made up of Coded Instructions and Data

e.g. 01001100 (binary)
Or

B8200 (hexadecimal)

Each piece of machine code is stored as a binary number
and then decoded and executed by the CPU’s logic
circuits.

This means that writing programs in ‘Machine Code’ is
difficult for a human to do.

High Level Language

Assembly Language

Machine Language
(Code)

Hardware (CPU)

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Difference between high level and low level code…
Assembly Language (Low Level Language)

To overcome this issue, assembly language was created.

This language has a small set of commands which represent certain pieces of machine
code

This helped programmers as they didn’t have to remember sets of binary code, instead
they learnt commands.
EG: Instead of memorising what 1011 or 1001 meant, they just had to remember
commands like ADD and SUB

These commands are known as Mnemonics (simple memory aids).

Assembly language is still quite difficult to learn and use and this is why High Level
Languages were produced.

(Due to less code, assembly language can be processed by the CPU far more quickly
than high level languages)

High Level Language

Assembly Language

Machine Language
(Code)

Hardware (CPU)

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Difference between high level and low level code…

High Level Languages (Python, Java, C++ etc)

High level code (aka ‘source code’) is far more easy
to write and therefore for humans to understand.

Its purpose is to be easier to write AND STILL be easily
translated into machine code so that it can be
processed by the CPU.

To help it be translated, it makes use of:
KEY WORDS

and
SYNTAX

(rules for the keywords and arguments that go with them)

Using keywords as opposed to any old English means that
translations can happen – reserved words such as PRINT are known to
translators where as ‘put on screen’ is not etc.

High Level Language

Assembly Language

Machine Language
(Code)

Hardware (CPU)

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Introducing Translators

High Level
Language

Assembly
Language

Machine
Language (Code)

Hardware (CPU)

?

So how does our ‘HUMAN WRITTEN CODE’ get turned into Machine
Code?

Translators!

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Translators

Translators are programs that convert high level language
commands:

print, IF, For etc.
…into a set of machine code commands:

1011, 11001, 11000011110 etc
…so that the CPU can process the data!

There are 2 ways in which translators work:

1. Take the whole code and convert it into machine code
before running it (known as compiling).

1. Take the code one instruction at a time, translate and run
the instruction, before translating the next instruction
(known as interpreting).

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Types of Translator
There are 3 types of translator:

Compiler Interpreter Assembler

Converts the whole
code into one file
(often a .exe file).

The file can then be run
on any computer
without the translator
needing to be present.

Can take a long time to
compile source code
as the translator will
often have to convert
the instructions into
various sets of machine
code as different CPUs
will understand
instructions with
different machine code
from one another.

Converts the source
code into machine
code 1 line at a time.

Program therefore runs
very slowly.

Main reason why an
interpreter is used is at
the testing /
development stage.

Programmers can
quickly identify errors
and fix them.

The translator must be
present on the
computer for the
program is to be run

This type of translator is
used for Assembly
Language (not High
Level Languages).

It converts mnemonic
assembly language
instructions into
machine code.

Translators

Compilers
Interpreters

Assemblers

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Assembler
An assembler translates assembly language into machine code. Assembly
language consists of mnemonics for machine opcodes so assemblers perform a 1:1
translation from mnemonics to a direct instruction.
For example: LDA #4 converts to 0001001000100100
Conversely, one instruction in a high level language will translate to one or more
instructions at machine level.
Advantages of using an Assembler:
• Very fast in translating assembly language to machine code as 1 to 1 relationship
• Assembly code is often very efficient (and therefore fast) because it is a low level

language
• Assembly code is fairly easy to understand due to the use of English-like

mnemonics
Disadvantages of using Assembler:
• Assembly language is written for a certain instruction set and/or processor
• Assembly tends to be optimised for the hardware it's designed for, meaning it is

often incompatible with different hardware
• Lots of assembly code is needed to do relatively simple tasks, and complex

programs require lots of programming time

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Compiler
A Compiler is a computer program that translates code written in a high
level language to a lower level language, object/machine code. The most
common reason for translating source code is to create an executable
program (converting from a high level language into machine language).

Advantages of using a compiler
• Source code is not included, therefore compiled code is more secure

than interpreted code
• Tends to produce faster code than interpreting source code
• Produces an executable file, and therefore the program can be run

without need of the source code

Disadvantages of using a compiler
• Object code needs to be produced before a final executable file, this

can be a slow process
• The source code must be 100% correct for the executable file to be

produced

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Interpreter
An interpreter program executes other programs directly, running through program
code and executing it line-by-line. As it analyses every line, an interpreter is slower
than running compiled code but it can take less time to interpret program code
than to compile and then run it — this is very useful when prototyping and testing
code. Interpreters are written for multiple platforms, this means code written once
can be run immediately on different systems without having to recompile for each.
Examples of this include flash based web programs that will run on your PC, MAC,
games console and Mobile phone.
Advantages of using an Interpreter
• Easier to debug(check errors) than a compiler
• Easier to create multi-platform code, as each different platform would have an

interpreter to run the same code
• Useful for prototyping software and testing basic program logic

Disadvantages of using an Interpreter
• Source code is required for the program to be executed, and this source code

can be read making it insecure
• Interpreters are generally slower than compiled programs due to the per-line

translation method

GCSE Computing: A451 Computer Systems & Programming

www.computerscienceuk.com

Questions

• For a computer game running on a home
console, would you use a compiler or an
interpeter? Explain why.

• For a simple learning tool that will be released
on the web for school children to use at
home, what would be the best choice of
translator? Explain why.

Sidmouth College Computer Studies
Department

