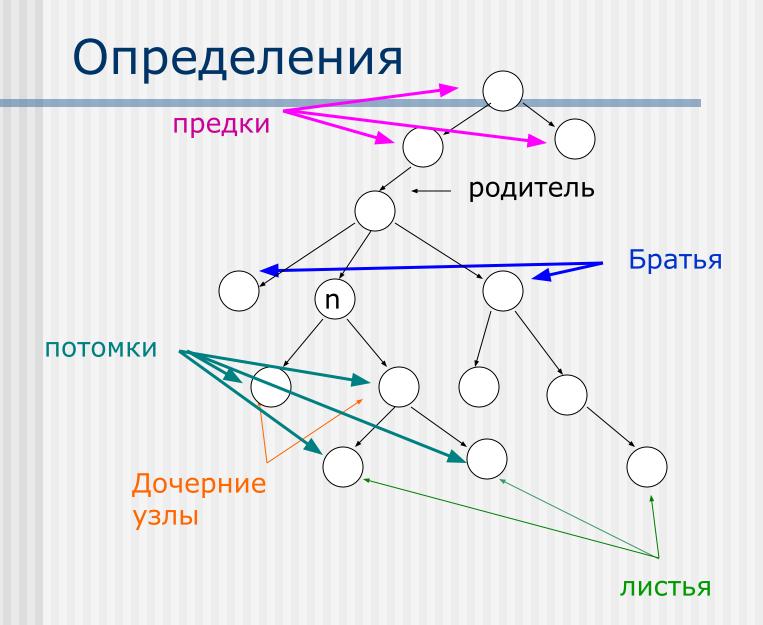

ДЕРЕВЬЯ

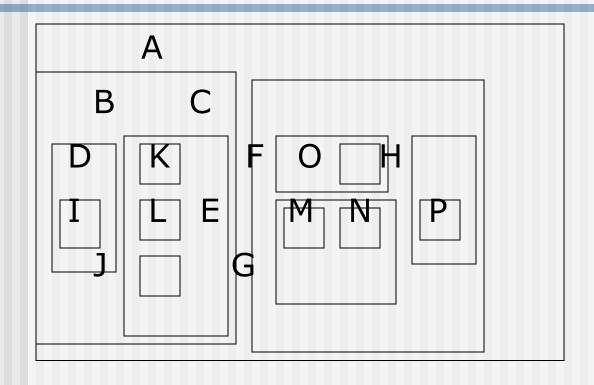
Терминология

Структура дерева

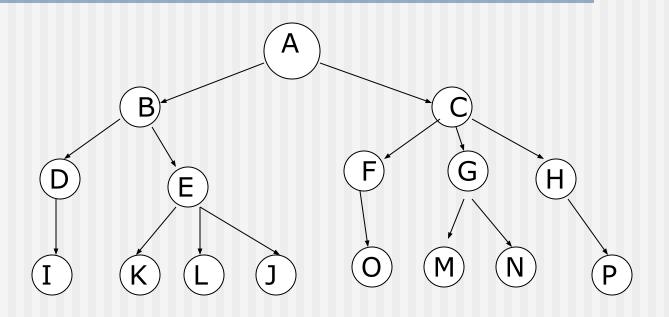


Корневым деревом называется множество элементов, в котором выделен один, называемый корнем, а все остальные элементы разбиты на непересекающиеся подмножества, каждое из которых, в свою очередь, есть дерево

- Формальное определение дерева:
 - Один узел является деревом
 Этот же узел является и корнем этого дерева
 - Пусть n –узел, а T_1 , T_2 ,..., T_k деревья с корнями n_1 , n_2 ,..., n_k соответственно. Тогда можно построить новое дерево, сделав n родителем узлов n_1 , n_2 ,..., n_k . В этом дереве n корень, T_1 , T_2 ,..., T_k поддеревья, n_1 , n_2 ,..., n_k сыновья узла n/


- Родитель узла п узел дерева, находящийся непосредственно над узлом п
- Дочерний узел узла п −узел дерева, находящийся непосредственно под узлом П
- Корень единственный узел дерева, не имеющий родителей
- Лист − узел, не имеющий дочерних узлов
- Братья − узлы, имеющие общих родителей

- Путем из узла n₁ в узел n_k называется последовательность узлов n₁, n₂, ... n_k, где для всех i: 1<=I<k узел n_i является родителем узла n_{i+1}
 Длиной пути называется число на единицу меньшее числа узлов, составляющих этот путь
- Предок узла п − узел, расположенный на пути от корня к узлу п
- Потомок узла n расположенный на пути от узла n к листу


- Высота узла п − длина самого длинного пути из узла п до какого-нибудь листа
- Высота дерева высота его корня
- Глубина узла п − длина пути от корня до этого узла
- Степень узла п − число непосредственных потомков

Способы отображения деревьев: Вложенные множества

(A(B(D(I),E(K,L,J)),(C(F(O),G(M,N),H(P)))

Способы отображения деревьев: Граф

(A(B(D(I),E(K,L,J)),(C(F(O),G(M,N),H(P)))

Бинарные деревья

- Бинарным деревом называется множество узлов, которое либо пусто либо разделено на корень и два подмножества, которые также представляют собой бинарные деревья
- В бинарном дереве каждый узел
 - Либо пуст
 - Либо не имеет сыновей
 - Либо имеет только левого сына
 - Либо имеет только правого сына
 - Либо имеет двух сыновей

Бинарное дерево поиска

- Упорядоченным называется дерево, у которого непосредственные потомки каждого узла упорядочены
- Справедливо правило:
 - Если а и b являются сыновьями одного узла и узел а лежит слева от узла b, то все потомки узла a будут находиться слева от любых потомков узла b
- Бинарное дерево, в котором значение каждого узла п больше значения каждого узла левого поддерева, но меньше значения каждого узла правого поддерева, называется бинарным деревом поиска