
Digital Design and Computer Architecture
60-265

Dr. Robert D. Kent
LT 5100

519-253-3000 Ext. 2993

rkent@uwindsor.ca

Lecture 1
Introduction

Preliminary Remark

• Review Course Outline (posted on website)

Course Syllabus

• This course presents a variety of topics on the
design and use of modern digital computers,
including:
– Digital representations, Digital (Boolean) Logic
– Modular design concepts in digital circuits

• Combinational circuits
• Sequential circuits.

– Instruction architecture, cycle, timing logic
– Memory, CPU and Bus Organization.
– Assemblers, assembly language

• The detailed schedule and topics covered may be
adjusted at the discretion of the instructor
– Students will be advised in advance of lecture topics and

assigned reading.

Digital Design and Computer Architecture

• Von Neumann Architecture
– The 5 component design model

• The Instruction Cycle
– Basic
– Exceptions

• Instruction architecture
– software design
– hardware circuits

Digital Design & Computer Architecture

Computer Science – Grade 11

Von Neuman Architecture

Objectives
• Von Neumann Architecture

– 5 component design of the stored program digital computer
– the instruction cycle

• Basic
• Exceptions

– instruction architecture
• software design
• hardware circuits

• Digital Design
– Boolean logic and gates
– Basic Combinational Circuits
– Karnaugh maps
– Advanced Combinational Circuits
– Sequential Circuits

von Neumann Architecture
• Principles

– Data and instructions are both stored in the main memory(stored
program concept)

– The content of the memory is addressable by location (without
regard to what is stored in that location)

– Instructions are executed sequentially unless the order is
explicitly modified

– The basic architecture of the computer consists of:

Computer

Main
Memory

CPU

Control

Data

Bus

von Neumann Architecture
• A more complete view of the computer system architecture

that integrates interaction (human or otherwise) consists of:

Computer

Main
Memory

CPU

Control

Data
Input
Device

Output
Device

Secondary
Storage
Device

Computer System

Bus Bus

BusFive Main Components:

1. CPU

2. Main Memory (RAM)

3. Input/Oouput Devices

4. Mass Storage

5. Interconnection network (Bus)

von Neumann Architecture
• A more complete view of the computer system architecture

that integrates interaction (human or otherwise) consists of:

Computer

Computer System

Five Main Components:

1. CPU

2. Main Memory (RAM)

3. Input/Output Devices

4. Mass Storage

5. Interconnection network (Bus)

Another view of a digital computer

The Instruction Cycle

• The Instruction Cycle
– Basic
– Intermediate
– Exceptions

The Instruction Cycle - Basic View

• Once the computer has been
started (bootstrapped) it
continually executes
instructions (until the computer
is stopped)

• Different instructions take
different amounts of time to
execute (typically)

• All instructions and data are
contained in main memory

Fetch
Instruction

Start

Execute
Instruction

The Instruction Cycle - Intermediate View

• A complete instruction consists of
– operation code
– addressing mode
– zero or more operands

• immediately available data
(embedded within the
instruction)

• the address where the data
can be found in main memory

Fetch
Instruction

Start

Execute
Instruction

Fetch
Operand

Decode
Instruction

The Instruction Cycle - Exceptions

• Exceptions, or errors, may occur at
various points in the instruction
cycle, for example:

Fetch
Instruction

Start

Execute
Instruction

Fetch
Operand

Decode
Instruction

Possible
Exception?

Possible
Exception?

Possible
Exception?

Possible
Exception?

The Instruction Cycle - Exceptions

• Exceptions, or errors, may occur at
various points in the instruction
cycle, for example:

– Addressing - the memory does not
exist or is inaccessible

Fetch
Instruction

Start

Execute
Instruction

Fetch
Operand

Decode
Instruction

The Instruction Cycle - Exceptions

• Exceptions, or errors, may occur at
various points in the instruction
cycle, for example:

– Operation - the operation code does
not denote a valid operation

Fetch
Instruction

Start

Execute
Instruction

Fetch
Operand

Decode
Instruction

The Instruction Cycle - Exceptions

• Exceptions, or errors, may occur at
various points in the instruction
cycle, for example:

– Execution - the instruction logic fails,
typically due to the input data

• divide by zero
• integer addition/subtraction

overflow
• floating point underflow/overflow

Fetch
Instruction

Start

Execute
Instruction

Fetch
Operand

Decode
Instruction

Instruction Architecture

• Software design
• Hardware circuits

Instruction Architecture - Software Design

• Each computer CPU must be designed to accommodate and
understand instructions according to specific formats.

• Examples:
– All instructions must have an operation code specified
– NOP no operation
– TSTST test and set

OpCode

Instruction Architecture - Software Design

• Each computer CPU must be designed to accommodate and
understand instructions according to specific formats.

• Examples:
– Most instructions will require one, or more, operands
– These may be (immediate) data to be used directly
– or, addresses of memory locations where data will be found

(including the address of yet another location)

OpCode Operand (Address)

Instruction Architecture - Software Design

• Sometimes the instruction format requires a code, called the
Mode, that specifies a particular addressing format to be
distinguished from other possible formats
– direct addressing
– indirect addressing
– indexed addressing
– relative addressing
– doubly indirect addressing
– etc.

OpCode Op. (Addr.)Op. (Addr.) ModeMode

Instruction Architecture - CPU
• The CPU must be designed to accommodate the instructions

and data to be processed

System Bus

System Bus

C
ontrol B

us

D
ata B

us

A
ddress B

us

I/O 1

CPU RA
M

I/O 2

ALU

CU

Regs

PC

PSW

I
R

Internal

CPU Bus

I/O n

Instruction Architecture - Hardware Circuits

• Everything that the computer can do is the result of designing
and building devices to carry out each function – no magic!

• At the most elementary level the devices are called logic
gates.
– There are many possible gate types, each perform a specific

Boolean operation (e.g. AND, OR, NOT, NAND, NOR, XOR,
XNOR)

• ALL circuits, hence all functions, are defined in terms of the
basic gates.

• We apply Boolean Algebra and Boolean Calculus in order to
design circuits and then optimize our designs.

Instruction Architecture - Hardware Circuits
• Data is represented by various types of “signals”, including

electrical, magnetic, optical and so on. Data “moves” through
the computer along wires that form the various bus networks
(address, data, control) and which interconnect the gates.

• Combinations of gates are called integrated circuits (IC).

• All computer functions are defined and controlled by IC’s of
varying complexity in design. The manufacture of these may
be scaled according to size/complexity:
– LSI large scale integration
– VLSI very large scale integration
– ULSI ultra large scale integration

Instruction Architecture - CU

• The control unit must decode instructions, set up for
communication with RAM addresses and manage the data
stored in register and accumulator storages.

• Each such operation requires separate circuitry to perform the
specialized tasks.

• It is also necessary for computer experts to have knowledge
of the various data representations to be used on the machine
in order to design components that have the desired
behaviours.

Instruction Architecture - ALU

• All instructions together are called the instruction set
– CISCcomplex instruction set
– RISCreduced instruction set

• Each ALU instruction requires a separate circuit, although
some instructions may incorporate the circuit logic of other
instructions

Our Goal – Design Circuits!

• After all the conceptualization we must now get down to the
most fundamental business – learning how to design circuits
that can implement the logic we intend to impose and use

• Circuit design arises out of a study of Boolean Set Theory and
Boolean Algebra
– We need to study and learn some new mathematics

• We will need to understand design optimization
– How to make the design as lean and efficient as possible

• We will work towards higher level abstraction of device
components, but start at an elementary level of concrete
behaviours with predefined units called gates.

Assignment
• Why is Boolean important for understanding

computer architecture?
• Draw the symbols for and, nand, or, nor, not, XOR

and write the truth table for each.
• Explain, CMOS, NMOS, PMOS, NFET, PFET and

draw a symbol for each.
• What is an “adder”? Draw circuit for “Adder”.
• What is a “FLIP-FLOP”? Draw the circuit and

explain.
• Who was Von Neuman?
• Explain “Von Neuman’s” theory.

