
Exceptions and testing
10/08/2016

Problems (errors) vs Exceptions

• “Problem” – situation when your program
behaves not in expected way
• 2 + 2 = 5

• 2 + 2 = 4 … but takes 20 seconds to calculate
• 1 / 0 … 1.0 / 0.0

• File.open(“???123321\5431`”);

• a = null;
a.equals(b);

• Exception – problem, that can be detected as something
“not expected to happen” (“exceptional”) and handled in
your code. In Java language exceptions are implemented
as specific kind of objects and operators to handle them.

Exception nature

Java Exception hierarchy

 Object

 |

 Throwable

 / \

 Error Exception

 |

 RuntimeException

Java Exception paradigm

• Classifications
• Compilation errors vs. runtime exceptions

• Errors vs Exception
• Errors are either compilation errors or serious

problems that should not be handled

• Checked (“predictable”) vs Unchecked exceptions
• All Errors are Unchecked exceptions

Java compile-time errors

Java compile-time errors

Java runtime-time exceptions
Unchecked exception

Checked exception

CheckTry block

Catch blocks

Finally block

Try – catch – finally

Try – catch – finally: special cases

Checked Exception
What is Checked Exception in Java Programming language? In simple
language: Exception which are checked at Compile time called Checked
Exception. Some these are mentioned below. If in your code if some of
method throws a checked exception, then the method must either handle the
exception or it must specify the exception using throws keyword.

1. IOException
2. SQLException
3. DataAccessException
4. ClassNotFoundException
5. InvocationTargetException
6. MalformedURLException

Unchecked Exception
Unchecked Exception in Java is those Exceptions whose handling is NOT
verified during Compile time. These exceptions occurs because of bad
programming. The program won’t give a compilation error. All Unchecked
exceptions are direct sub classes of RuntimeException class.

1. NullPointerException
2. ArrayIndexOutOfBound
3. IllegalArgumentException
4. IllegalStateException

Unit testing
• Unit testing – an approach in programming, that allows to

check if parts (units) of your program behaves right in
automatic way

• There are few frameworks to implement Unit test. JUnit is
pre-installed for Eclipse.

Multiple exception handling

Rethrowing exceptions

Rethrowing exceptions

 Task 1
Implement your own exception class to handle equation solving problems. Write
methods for solutions for:

1. Linear
2. Square

Each equation type is a class. Sometimes equations do not have real roots - in this
case throw your exception and handle using try-catch-finally it.

 Task 2
Take your first hometask, problem “Add 2 numbers”. Brush up the code, handle
exceptions correctly and provide proper reactions (print) on situations:

1. file not found
2. other file issues
3. parsing numbers
4. arithmetic overflow

 Task 3

For yesterday’s implementation of the Circle Equation add exceptions.
Find best existing exception implementations for these cases.

 Extra Task

Implement simple Miner game with console interface.
● Randomly set up bombs
● Handle bomb blast as exception.
● Move is made by typing coordinates (D4)
● Handle incorrect inputs
● Handle input for already processed cells

 A B C D E F G H
1████████████████
2████████████████
3██████ √████████
4████████ √▒▒ √██
5████████▒▒ 4▒▒██
6████████▒▒ √ √██
7████████████████
8████████████████

 Home Task
Write the program, that calculated intersection point (class Point) of two
sections (class Section). Handle following cases using exceptions
mechanism: sections do not intersect (output - NO INTERSECTION),
section(s) is degenerate (it’s length is 0, output - DEGENERATE), sections
coincide (COINCIDE). Add mandatory Input validation (INPUT ERROR).

E.g.
0 0 1 1 1 0 0 1

Answer
0.5 0.5

