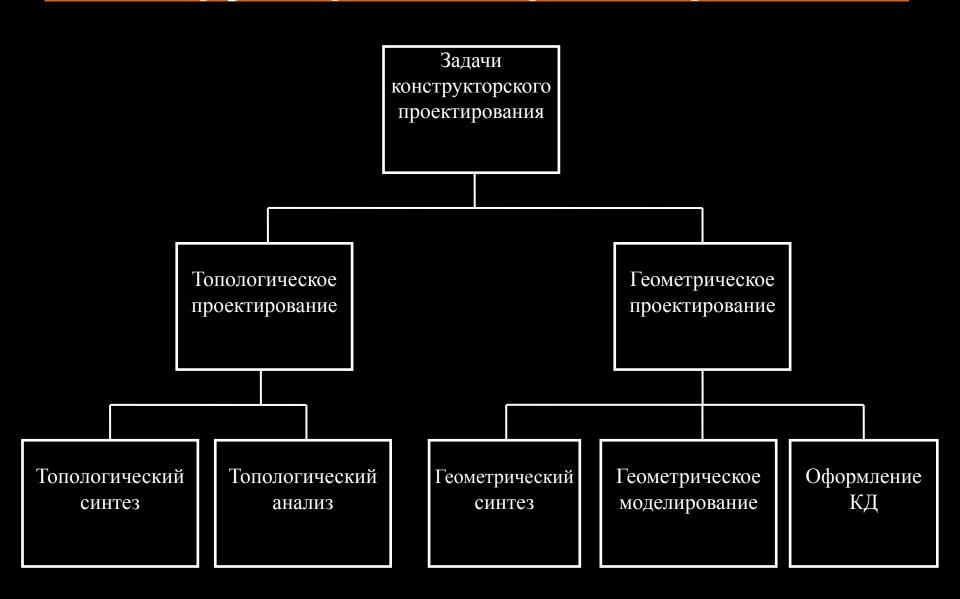
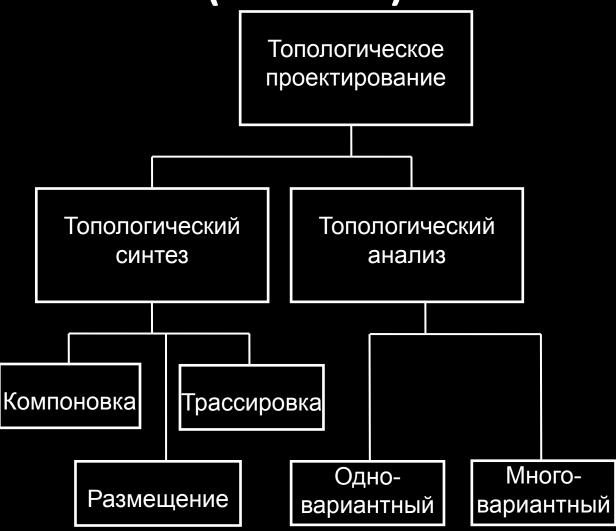
Информационные технологии автоматизированного проектирования Часть 1


Лекция 10

Лекция 10 Геометрическое моделирование в ИТАП


- 1 Классификация задач конструкторского проектирования
- 2 Геометрические модели
- 3 Комплексный подход к автоматизированному проектированию

Вопрос 1 Классификация задач конструкторского проектирования

Классификация задач конструкторского проектирования

классификация задач конструкторского проектирования (часть 1)

Топологический синтез

Компоновка – процесс перехода от логическофункционального или схемного описания устройства к конструктивному (процесс распределения функциональных элементов схемы по группам, соответствующим модулям различного уровня).

Размещение — выбора такого взаимного расположения элементов предыдущего иерархического уровня, при котором наилучшим образом учитываются предъявляемые к аппаратуре требования

Топологический синтез

Трассировка – соединение элементов предыдущего иерархического уровня между собой в текущем иерархическом уровне согласно заданной схеме и заданным критериям качества

два аспекта трассировки

- 1) Метрический аспект предполагает учет конструктивных размеров элемента и соединений контактных площадок
- 2) Топологический аспект связан с выбором допустимого пространственного расположения отдельных монтажных соединений на плате при ограничениях на число пересечений и число слоев монтажной платы.

Топологический анализ

Одновариантный или многовариантный анализ технического (технологического) решения с целью его оптимизации

классификация задач конструкторского проектирования (часть 2) Геометрическое проектирование Оформление Геометрический Геометрическое КД моделирование синтез Синтез Синтез Графические Текстовые геометрических формы документы документы объектов изделия Позиционные Метрические задачи задачи

Геометрический синтез

1) Синтез геометрических объектов:

Формирование (компоновка) сложных геометрических объектов (ГО) и элементарных ГО заданной структуры

Основной критерий — точность воспроизведения

2) Синтез формы изделия:

Получение рациональной или оптимальной формы деталей, узлов и т.п., влияющей на качество функционирования объектов конструирования

Используется на ранних стадиях проектирования изделий

Геометрическое моделирование

1) Позиционные задачи:

Определение взаимного расположение отдельных примитивов (инцидентность точки плоскости и т. п.)

Конструкторские задачи: определение факта касания деталей; оценка погрешности обработки и т.п.

2) Метрические задачи:

Вычисление длины, площади, центра масс и т.п.

Вопрос 2 Геометрические модели

Геометрические модели

Геометрическая модель – совокупность сведений, однозначно определяющих форму геометрического объекта

Формы представления:

- •Совокупность уравнений линий и поверхностей;
- •Алгебраические соотношения;
- •Графы;
- •Списки;
- •Таблицы;
- •Описания на специальных графических языках

Геометрические модели

Применение геометрических моделей:

- •Описание геометрических свойств объекта (форма, расположение в пространстве);
- •Решение геометрических задач (позиционных и метрических);
- •Преобразования формы и положения геометрических объектов;
- •Ввод графической информации;
- •Оформление КД

Виды геометрических моделей

1. Аналитические

Представляются уравнениями, описывающими контуры или поверхности

Служат для описания примитивов и составных объектов

2. Алгебраические

Геометрический объект описывается логической функцией условий, выражающих принадлежность точки какой-либо области

3. Канонические

Представляются уравнениями в каноническом виде

 $0 \leqslant t \leqslant 2\pi$, _ K \square 2

$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
. – Эллипс $egin{cases} x=a\cos t \ y=b\sin t \end{cases}$

Виды геометрических моделей

4. Рецепторные

Приближенное представление объекта в плоскости или пространстве рецепторов

5. Каркасные

Представляются каркасами геометрических фигур

6. Кинематические

Параметрическая форма записи для описания объектов (простые модели – поверхности вращения и т.п.)

7. Макромодели

Математическое описание типовых геометрических фигур посредством описания сложных макрообъектов

Вопрос 3 Комплексный подход к автоматизированному проектированию

Комплексный подход

Принципы системного подхода:

- 1. Рассмотрение частей сложной системы с учетом их взаимодействия
- 2. Выявление структуры системы
- 3. Типизация связей
- 4. Определение атрибутов
- 5. Анализ влияния внешней среды

По комплексности автоматизации проектирования

- 1) одноэтапные;
- 2) многоэтапные;
- 3) комплексные (все этапы)

Автоматизированные CAD/CAM/CAE/PDM комплексы

Классификация пакетов САПР:

- 1) САПР нижнего уровня (CAD) (AutoCAD, Компас ..)
- 2) САПР среднего уровня (CAD/CAM)(T-FLEX CAD, SolidWorks, ТехноПро, Autodesk Mechanical Desktop..)
- 3) САПР высокого уровня (CAD/CAM/CAE/PDM) (Pro/Engineer, T-FLEX..)

Автоматизированные CAD/CAM/CAE/PDM комплексы

1. Программы CAD:

программное обеспечение для создания чертежей и трехмерных моделей, а также программы для инженеров-технологов (составление технологических процессов)

2. Программы САМ:

программное обеспечение для автоматического и полуавтоматического создания и редактирования управляющих программ для станков с ЧПУ, а также ПО для передачи управляющих программ на станки с ЧПУ.

Автоматизированные CAD/CAM/CAE/PDM комплексы

3. Программы САЕ:

программное обеспечение для инженерных расчетов. ПО для общих и специализированных расчетов

4. Программы PDM:

программное обеспечение для ведения документооборота, создания и управления архивами чертежей, а также ПО для работы со сканированными документами технического назначения.

CAD/CAM/CAE/PDM комплексы

CIM (COMPUTER INTEGRATED MANUFACTURING)

системы, обеспечивающие автоматизацию всего жизненного цикла изделия, начиная с задач маркетинга, продолжая проектированием и производством, завершая сбытом продукции, сервисным обслуживания и утилизацией изделий

CALS-технологии – путь к комплексной автоматизации

- Объединение в едином комплексе задач 1-4
- «поддержка жизненного цикла» изделия
- «повышение конкурентоспособности за счет сокращения затрат, сокращения сроков вывода новых образцов на рынок, повышения качества продукции за счет сквозной поддержки ее

CALS-технологии

Безбумажное представление информации

1	2	3
В форме базы данных (внутреннее представление информации в компьютерной системе)	В форме электронного конструкторского документа (ЭКД)	В форме, пригодной для восприятия человеком
		Бумажный конструкторский документ

Структура электронного документа

- Заголовок содержит информацию, идентифицирующую документ и авторов
- Содержимое документа состоит из одного или нескольких файлов
- ЭЦП (по ГОСТ 34.10-2002)

Заголовок Файл 1 ... Файл N ЭЦП

Применение электронно-цифровой подписи

Применение электронно-цифровой

ПОДПИСИ

Вопросы по прочитанному материалу?

Спасибо за внимание!