Data Modelling and Databases

Jooyoung Lee

http://www.dainfos.com

Slides are adopted from Jennifer Widom @ Stanford University

Database Management System (DBMS) provides....

... efficient, reliable, convenient, and safe multi-user storage of and access to massive amounts of persistent data.

Massive

- Persistent
- Safe
- Multi-user
- Convenient
- Efficient
- Reliable

Intro to Databases

- Database applications may be programmed via "frameworks"
- DBMS may run in conjunction with "middleware"
- Data-intensive applications may not use DBMS at all

Key concepts

- Data model
- Schema versus data
- Data definition language (DDL)
- Data manipulation or query language (DML)

Key peopleDBMS implementer

- Database designer
- Database application developer
- Database administrator

- Used by all major commercial database systems
- Very simple model
- Query with high-level languages: simple yet expressive
- Efficient implementations

Schema = structural description of relations in database **Instance** = actual contents at given point in time

		-

1		

Database = set of named **relations** (or **tables**) Each relation has a set of named **attributes** (or **columns**) Each **tuple** (or **row**) has a value for each attribute Each attribute has a **type** (or **domain**)

Student

ID	name	GPA	photo
123	Emil	3.4	
142	Artur	3	:+)
521	Damir	NULL	~

	name	unit	CAP
	dorm1	205	4
	dorm2	205	5
1	dorm1	403	4
2			

Schema – structural description of relations in database ⁺ Instance – actual contents at given point in time

Student

+)
\approx

name	unit	CAP
dorm1	205	4
dorm2	205	5
dorm1	403	4

NULL – special value for "unknown" or "undefined" se

Student

name	GPA	photo
Emil	3.4	
Artur	3	:+)
Damir	NULL	\sim
	Artur	Artur 3

	name	unit	САР
	dorm1	205	4
	dorm2	205	5
	dorm1	403	4
-			

Key – attribute whose value is unique in each tuple e ' Or set of attributes whose combined values are unique

Student

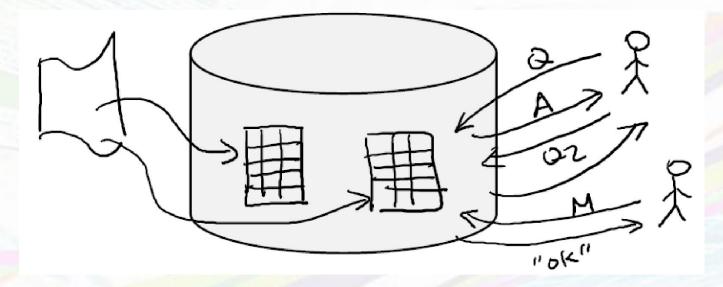
	name	GPA	photo
123	Emil	3.4	<u></u>
142	Artur	3	:+)
521	Damir	NULL	\approx

(name	unit	CAP
	dorm1	205	4
	dorm2	205	5
	dorm1	403	4

Creating relations (tables) in SQL

Oreate Table Student(ID, name, OPA, photo)

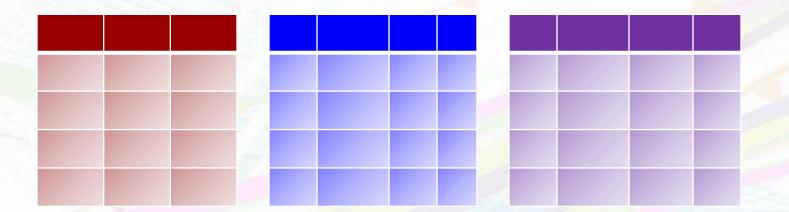
(name string, unit char(s), CLP (nteger)



- Used by all major commercial database systems
- Very simple model
- Query with high-level languages: simple yet expressive
- Efficient implementations

Steps in creating and using a (relational) database

- 1. Design schema; create using DDL
- 2. "Bulk load" initial data
- 3. Repeat: execute queries and modifications



Ad-hoc queries in high-level language

- All students with GPA > 3.7 applying to Stanford and MIT only
- All engineering departments in CA with < 500 applicants
- College with highest average accept rate over last 5 years
- Some easy to pose; some a bit harder
- Some easy for DBMS to execute efficiently; some harder
- "Query language" also used to modify data

Queries return relations ("compositional", "closed")

Query Languages

Relational Algebra

SQL

- Write one page essay in latex [sharelatex.com] that includes the followings:
- □ Your name and email.
- □ Your short bio.
- Categorize databases based on your opinion by using any search engine.
- Cite all the sources you use.
- □ No copy-paste.

Whether you know it or not, you're using a database every day

