
Java Troubleshooting and 
Diagnostic

Roman Makarevich



Dealing with Errors
User input errors: In addition to the inevitable typos, some users like to 
blaze their own trail instead of following directions. Suppose, for example, 
that a user asks to connect to a URL that is syntactically wrong. Your code 
should check the syntax, but suppose it does not. Then the network 
package will complain.

Device errors: Hardware does not always do what you want it to. The 
printer may be turned off. A web page may be temporarily unavailable. 
Devices will often fail in the middle of a task. For example, a printer may run 
out of paper in the middle of a printout.

Physical limitations: Disks can fill up; you can run out of available memory.

Code errors: A method may not perform correctly. For example, it could 
deliver wrong answers or use other methods incorrectly. Computing an 
invalid array index, trying to find a nonexistent entry in a hash table, and 
trying to pop an empty stack are all examples of a code error.



The Classification of Exceptions



Java Platform Debugger Architecture



JVM Debug Parameters 

Modern JVMs
-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005

For JDK 1.4.x
-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

For JDK 1.3.x or earlier
-Xnoagent -Djava.compiler=NONE -Xdebug 
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005



Java Platform Debugger Architecture



Exceptions and Performance

15
millisecon

d

3000
millisecon

d



HotSpot Compilers



What is a Java stack trace?
Java stack trace is a user-friendly snapshot of the Java 
thread. 



Java Bytecode Debugging Information

source Source file debugging information

lines Line number debugging information

vars Local variable debugging information



Thread Count (Default Configuration)



Deadlock



Expert’s Checklist
For hanging, deadlocked or frozen programs: If you think your program is 
hanging, generate a stack trace and examine the threads in states MW or 
CW. If the program is deadlocked then some of the system threads will 
probably show up as the current threads, because there is nothing else for 
the JVM to do.
 
For crashed, aborted programs: On UNIX look for a core file. You can 
analyze this file in a native debugging tool such as gdb or dbx. Look for 
threads that have called native methods. Because Java technology uses a 
safe memory model, any corruption probably occurred in the native code. 
Remember that the JVM also uses native code, so it may not necessarily be 
a bug in your application. 

For busy programs: The best course of action you can take for busy 
programs is to generate frequent stack traces. This will narrow down the 
code path that is causing the errors, and you can then start your 
investigation from there. 



Where Is My Stacktrace?



How is Java Thread Dump Generated?

• By sending a signal to JVM (ctrl+break)

• Using JDK 5/6 tools (jps, jstack)

• Using debugging tools (jdb, IDEs)

• Using Java API calls

• Other ad hoc tools (e.g. adaptj StackTrace)



Thread Dump By Sending a Signal to JVM

UNIX: 
• Ctrl+\ 
• kill -QUIT process_id

Windows:
• Ctrl+Break
• SendSignal process_id

Notes: 
• No -Xrs in Java command line!
• SendSignal is a homemade 
program!



Thread Dump Using JDK 5/6 tools

jsta
ck

jps



Thread Dump Using Debugging Tools

suspend all 
threads

jdb

get thread 
dump

java with 
debug



Using a Debugger

threads [tHReadgroup] Lists threads

thread tHRead_id Sets default thread

suspend [tHRead_id(s)] Suspends threads (default: all)

resume [tHRead_id(s)] Resumes threads (default: all)

where [thread_id] or all Dumps a thread's stack

wherei [tHRead_id] or all Dumps a thread's stack and program 
counter info

tHReadgroups Lists thread groups

tHReadgroup name Sets current thread group

print name(s) Prints object or field

dump name(s) Prints all object information

locals Prints all current local variables

classes Lists currently known classes

methods class Lists a class's methods

stop in class.method Sets a breakpoint in a method

stop at class:line Sets a breakpoint at a line

up [n] Moves up a thread's stack

down [n] Moves down a thread's stack

clear class:line Clears a breakpoint

step Executes the current line, stepping inside calls

stepi Executes the current instruction

step up Executes until the end of the current method

next Executes the current line, stepping over calls

cont Continues execution from breakpoint

catch class Breaks for the specified exception

ignore class Ignores the specified exception

list [line] Prints source code

use [path] Displays or changes the source path

memory Reports memory usage

gc Frees unused objects

load class Loads Java class to be debugged

run [class [args]] Starts execution of a loaded Java class

!! Repeats last command

help (or ?) Lists commands

exit (or quit) Exits debugger



Using Java API calls

• Throwable.printStackTrace()

• Thread.dumpStack()

• Since Java 1.5: Thread.getState()

• Since Java 1.5: Thread.getStackTrace()

• Since Java 1.5: Thread.getAllStackTraces()



Thread Dump Analyser



IBM Thread & Monitor Dump Analyser 



IBM Thread & Monitor Dump Analyser



Determining the Thread States

R Running or runnable thread 

S Suspended thread 

CW Thread waiting on a condition variable 

MW Thread waiting on a monitor lock 

MS Thread suspended waiting on a monitor lock 



Thread States



Thread States



Java 1.4 tools

jinfo

jmap

jstack

jconsole

jps

jstat

jdb



Java 1.5 tools

jinfo

jmap

jstack

jconsole

jps

jstat

jdb



Java 1.6 tools

jinfo

jmap

jstack

jconsole

jps

jstat

jdb



Debugging Performance Issues (1)
Symptom: High CPU consumption and poor response time

Thread dump profile: Most of the dumps show the same thread in 
the same method or same class

Solution: The method/class is the one which is definitely taking a lot 
of CPU. See if you can optimize these calls. Some of the REALLY easy 
kills we have had in this category is using a Collection.remove(Object) 
where the backend collection is a List. Change the backed collection 
to be a HashSet. A word of caution though: There have been times 
when the runnable threads are innocent and the GC is the one 
consuming the CPU.



Debugging Performance Issues (2)
Symptom: Low CPU consumption most of which is kernel time and 
poor response time

Thread dump profile: Most thread dumps have the runnable threads 
performing some IO operations

Solution: Most likely your application is IO bound. If you are reading a 
lot of files from the disc, see if you can implement 
Producer-Consumer pattern. The Producer can perform the IO 
operations and Consumers do the processing on the data which has 
been read by the producer. If you notice that most IO operations are 
from the data base driver, see if you can reduce the number of 
queries to the database or see if you can cache the results of the 
query locally.



Debugging Performance Issues (3)
Symptom: Medium/Low CPU consumption in a highly multithreaded 
application

Thread dump profile: Most threads in most thread dumps are 
waiting for a monitor on same object

Solution: The thread dump profile says it all. See if you can: eliminate 
the need for synchronization [using 
ThreadLocal/Session-scopeobjects] or reduce the amount of code 
being executed within the synchronized block.



Debugging Performance Issues (4)
Symptom: Medium/Low CPU consumption in a highly multithreaded 
application

Thread dump profile: Most threads in most thread dumps are 
waiting for a resource

Solution: If all the threads are choked for resources, say waiting on 
the pool to create EJB-bean objects/DB Connection objects, see if you 
can increase the pool size.



Example 1: Deadlock

org.apache.log4j.Category.callAppenders():



Example 2: Performance Issue

...
at org.apache.tools.ant.DirectoryScanner.scandir(DirectoryScanner.java:1019)
at org.apache.tools.ant.DirectoryScanner.scandir(DirectoryScanner.java:1065)
at org.apache.tools.ant.DirectoryScanner.scandir(DirectoryScanner.java:1065)
at org.apache.tools.ant.DirectoryScanner.scandir(DirectoryScanner.java:1065)
at org.apache.tools.ant.DirectoryScanner.scandir(DirectoryScanner.java:1065)
at org.apache.tools.ant.DirectoryScanner.scandir(DirectoryScanner.java:1065)
at org.apache.tools.ant.DirectoryScanner.scandir(DirectoryScanner.java:1065)
at 
org.apache.tools.ant.DirectoryScanner.checkIncludePatterns(DirectoryScanner.java:836)
at org.apache.tools.ant.DirectoryScanner.scan(DirectoryScanner.java:808)
...



JVM Memory Structure

• Eden Space
• Survivor Space
• Tenured Generation

• Permanent Generation
• Code Cache



Allocated and Used Memory



Java Heap Memory & Tuning Options



Heap Dump
Typical information which can be found in heap dumps (depending 
on the heap dump type) is: 

All Objects 
Class, fields, primitive values and references

All Classes 
Classloader, name, super class, static fields

Garbage Collection Roots 
Objects defined to be reachable by the JVM

Thread Stacks and Local Variables 
The call-stacks of threads at the moment of the snapshot, and 
per-frame information about local objects



Shallow vs. Retained Heap
Shallow heap is the memory consumed by one object. An object 
needs 32 or 64 bits (depending on the OS architecture) per reference, 
4 bytes per Integer, 8 bytes per Long, etc. Depending on the heap 
dump format the size may be adjusted (e.g. aligned to 8, etc...) to 
model better the real consumption of the VM. 

Retained set of X is the set of objects which would be removed by GC 
when X is garbage collected. 

Retained heap of X is the sum of shallow sizes of all objects in the 
retained set of X, i.e. memory kept alive by X.
 



Shallow vs. Retained Heap



Shallow and retained sizes



Dominator Tree

An object x dominates an object y if every path in the object graph from the start (or the 
root) node to y must go through x.

The immediate dominator x of some object y is the dominator closest to the object y.

A dominator tree is built out of the object graph.



Garbage Collection Roots



Garbage Collection Roots

System Class 

JNI Local 

JNI Global 

Thread Block 

Thread 

Busy Monitor 

 

Java Local

Native Stack 

Finalizer 

Unfinalized 

Unreachable 

Unknown 



Garbage Collection Roots

Class 

Thread 

Stack Local 

JNI Local 

JNI Global

Monitor Used

Held by JVM 



How is Java Heap Dump Generated?

• By sending a signal to JVM (ctrl+break)
• Using JDK 5/6 tools (jps, jmap)
• Using JConsole
• Other ad hoc tools (e.g. Eclipse MAT)

1. Get Heap Dump on an 
OutOfMemoryError

2. Interactively Trigger a Heap Dump:



Heap Dump on an OutOfMemoryError

java -XX:+HeapDumpOnOutOfMemoryError MainClass



Heap Dump By Sending a Signal to JVM

java -XX:+HeapDumpOnCtrlBreak MainClass

+
See Thread Dump By Sending a Signal to JVM



Heap Dump Using JDK 5/6 tools

jmap -dump:format=b,file=<filename.hprof> <pid>



Heap Dump Using JConsole



Eclipse Memory Analyser



Example 3: Memory Leak



Heap Memory Usage



Memory Pool “Eden Space”



Memory Pool “Survivor Space”



Memory Pool “Tenured Gen”



Non-Heap Memory Usage



Memory Pool “Code Cache”



Memory Pool “Perm Gen”



Max Thread Count Depends on Stack Size



Max Thread Count Depends on Heap Size



Stack Depth Depends on Stack Size



Java Class Loading



NoClassDefFoundError vs
ClassNotFoundException



The End


