Кодирование числовой информации

9 – 10 класс

Начало

Познакомиться

с форматами представления чисел в компьютере

Научиться

представлять целые числа в формате с фиксированной точкой

Цели урока

Научиться

выполнять сложение и вычитание двоичных кодов в формате с фиксированной точкой

Повторить

основные понятия по теме «Системы счисления»

Закрепить

правила перевода чисел из одной системы счисления в другую

Повторение материала

Подготовка к ЕГЭ

Задание 1. Сколько единиц в двоичной записи чисел:

- 1)33
- 2)68
- 3)1027


Проверка задания

Проверим домашнее задание!

Задание 1.

Перевести число 304, в десятичную систему счисления.

$$304_5 = 3*25 + 0*5 + 4*1 = 75 + 4 = 79_{10}$$

Задание 2.

Перевести число 131₁₀ в семеричную систему счисления.

Задание 3.

Выполнить сложение двоичных чисел $101101_2 + 1101101_2$

Задание 4. Перевести число из:

1) двоичной системы счисления в восьмеричную и шестнадцатеричную: 111100101110101_2

$$74565_8 = 7975_{16}$$

2) восьмеричной системы счисления в шестнадцатеричную систему счисления: 3104256_8 .

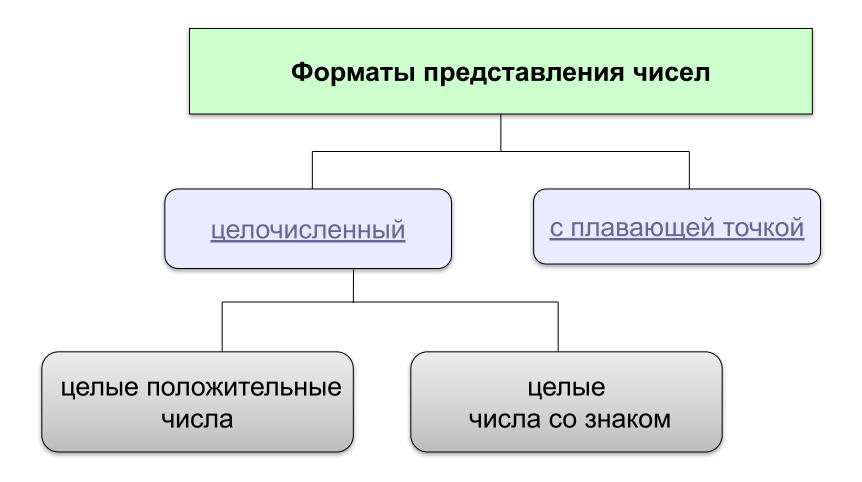
$$0 | 1100 | 1000 | 1000 | 1010 | 1110_2 = C88AE_{16}$$

Задание 5. (Подготовка к ЕГЭ)

Какое двоичное число лежит между числами ED_{16} и 357_8 ?

Решение

$$ED_{16} = 11101101_2$$


$$357_8 = 11101111_2$$

Ответ: 111011110₂

Тема: «Кодирование числовой информации»

Целочисленный формат (формат с фиксированной точкой)

Запись двоичного кода целого числа

Алгоритм записи двоичного кода целого числа:

- 1. Перевести число в двоичную систему счисления
- 2.Полученный результат дополнить слева незначащими нулями в пределах выбранного формата (*прямой код числа*)

Пример

Задание 1.

Записать двоичный код числа 35.

Решение

1. Переведём число в двоичную систему счисления

35	17	8	4	2	1
1	1	0	0	0	1

2. Дополним результат нулями слева в пределах выбранного формата

формат 1 байт

0	0	1	0	0	0	1	1
---	---	---	---	---	---	---	---

формат 2 байта

0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
						б	иты	числ	a						

Запись двоичного кода целого числа со знаком

Алгоритм перевода целых отрицательных чисел:

- 1.Записать прямой код модуля числа
- 2.Записать *обратный* код числа, т.е. инвертировать все цифры двоичного кода модуля числа, включая разряд знака: 0 заменить на 1 и 1 на 0.
- 3.Записать *дополнительный* код, прибавив к меньшему разряду обратного кода 1.

Дополнительный код для положительного числа совпадает с прямым кодом.

знак числа	ячей	ки для	хранен	ия дво	ичных	цифр ч	исла

Знак числа:

- 0 прямой код неотрицательного числа
- 1 дополнительный код отрицательного числа

Пример

Задание 2.

Записать двоичный код числа -35 в однобайтовом формате. Решение

$$-35_{10} = -100011_2$$

1.Прямой код |-35|: 00100011

2.Обратный код: 11011100

3. Дополнительный код: 1 1011101

отрицательное число

1	1	0	1	1	1	0	1						
знак	яче	ячейки для хранения двоичных цифр числа											
числа													

Задания

на сложение и вычитание целых чисел

Задание 3. Найти сумму двоичных кодов и выполнить проверку в десятичной системе счисления.

$$13_{10} + 46_{10}$$

Задание 4. Найти разность двоичных кодов и выполнить проверку в десятичной системе счисления.

Проверка задания 3

Проверка задания 4а)

Проверка задания 4b) Проверка задания 4с)

Представление вещественных чисел (формат с плавающей точкой)

Нормализованная форма записи вещественных чисел $X=m^*p^n$, где

т- мантисса числа

р – основание системы счисления

n – порядок

порядок
$$152,34_{10} = 1523,4 * 10^{-1} = 1,5234 * 10^{2}$$
мантисса

Мантисса в целой части нормализованного числа содержит одну цифру, отличную от нуля!

нормализованное представление числа

Стандартные форматы	Размер ячейки
Одинарный	4 байта
Двойной	8 байт
Расширенный	10 байт

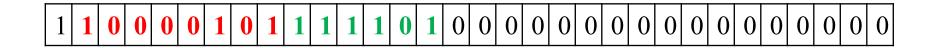
Алгоритм перевода вещественных чисел с плавающей точкой:

- 1.Записать число в нормализованном виде;
- 2.Вычислить смещённый порядок (порядок числа + 127₁₀);
- 3. Записать код числа в заданном формате.

3 6	байт	ÁТ					2 байт				1 байт					0 байт								
31																					3	2	1	0
	8 бит – для	3 бит — для																						
знак	записи				Į	ĮЛ	я з	ваг	И	CV	ı a	ιδο	co	Л	Ю	ГΗ	(O)	й :	ве	ЛІ	ИЧИ	ΙНЬ	I	
мантиссы	смещённого	смещённого					M	ан	T	1C	СЬ	I (σ	ез	Ц	(e)	10	й	Ч	ac'	ти)			
	порядка																							

Знак мантиссы:

- 0 положительное число
- 1- отрицательное число

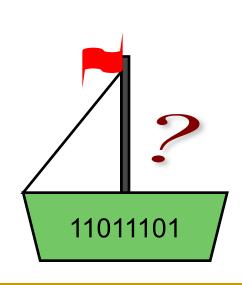

Пример

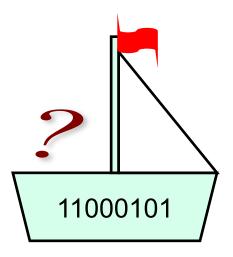
<u>Задание 5</u>.

Дано число (-125₁₀). Сформировать код с плавающей точкой в формате 4 байта.

Решение

- 1. Представим число в нормализованном виде: $125,0 = 1,25*10^2$
- 2. Переведём число 125 в двоичную систему счисления: 1111101_2
- 3. $1,25 = 1,111101, *10^6$
- 4. Вычислим смещённый порядок: $6_{10} + 127_{10} = 5_{10} + 128_{10} = 101_2 + 10000000_2 = 10000101_2$
- 5. Запишем двоичный код данного числа




Решение задач

Задание 6.

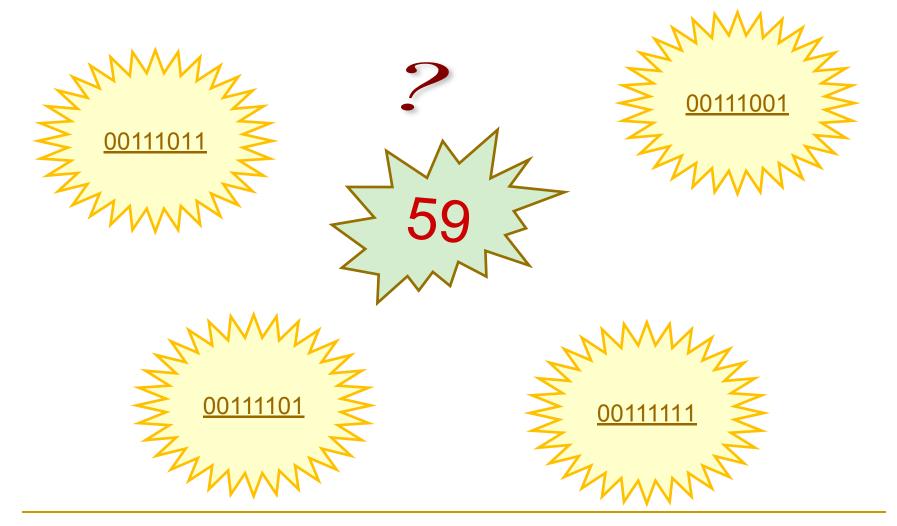
Определить, каким десятичным числам соответствуют следующие двоичные коды в однобайтном представлении.

<u>Задание 7</u>.

Представить дополнительный код 11001001 в десятичное число.

Решение

Учитывая, что в дополнительном коде первая цифра 1, получаем:


$$-110111_2 = -1*32 + 1*16 + 1*4 + 1*2 + 1*1 = -55_{10}$$

Задание 8.

Какой из двоичных кодов является представлением десятичного числа 59 в формате с фиксированной точкой?

Задание 9.

Закончите вычисления и заполните пропуски.

	0	1	0		0	1	?
$37_{10} + 48_{10}$		1	1	0		0	прямой код числа 48
							?
		ì	1	i		i	
							прямой код числа 37
							прямой код числа 37

?

Самостоятельная работа

- 1. Чему равно $x = 167_8 59_{16}$?
- 1) 111₈ 2) 111₁₆ 3) 36₈ 4) 36₁₆
- 2. Записать в однобайтовом формате прямой код числа 103.
- 3. Найти десятичное представление числа, записанного в дополнительном коде: 1 0100100.
- 4. Выполнить вычитание чисел в формате 1 байт: 27 61.
- 5. Какое целое положительное десятичное число соответствует двоичному коду, представленному в однобайтовом формате?

1	0	0	0	1	0	1	1

Спасибо за урок

1)
$$33 = 2^5 + 1 = 100000_2 + 1_2 = 100001_2$$

2)
$$68 = 2^6 + 2^2 = 1000000_2 + 100_2 = 1000100_2$$

3)
$$1027=2^{10}+3=10000000000_2+11_2=10000000011_2$$

$$13_{10} + 46_{10} = 59_{10}$$

- 0 0 0 1 1 0 1 прямой код числа 13
- 0 0 1 0 1 1 1 0 прямой код числа 46
- $0\ 0\ 1\ 1\ 1\ 0\ 1\ 1$ результат

$$111011_2 = 1*32 + 1*16 + 1*8 + 1*2 + 1*1 = 59_{10}$$

$$46_{10} - 13_{10} = 46_{10} + (-13_{10}) = 33_{10}$$

положительное число!

$$100001_2 = 1*32 + 1*1 = 33_{10}$$

*

Проверь себя!

$$13_{10}-46_{10}=13_{10}+(-46_{10})=-33_{10}$$
 $0\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ прямой код числа 46$
 $1\ 1\ 0\ 1\ 0\ 0\ 1\ 0$ дополнительный код числа 46
 $0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1$ дополнительный код числа 33
 $1\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1$ дополнительный код числа 33
 $1\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1$ результат

При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется 1:

$$1\ 0100000 + 1 = 1\ 0100001 = -33_{10}$$

*

Проверь себя!

$$-46_{10} - 13_{10} = -46_{10} + (-13_{10}) = -59_{10}$$

0 0 1 0 1 1 1 0 прямой код числа 46

0 0 0 1 1 0 1 прямой код числа13

1 1 0 1 0 0 0 1 обратный код числа 46

1 1 1 1 0 0 1 0 обратный код числа 13

1 1 0 1 0 0 1 0 дополнительный код числа 46

1 1 1 1 0 0 1 1 дополнительный код числа 13

1 1 1 0 0 0 1 0 1 дополнительный код числа 59

Переполнение разрядной сетки формата числа (1 отбрасывается)

При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется 1:

$$1\ 0111010 + 1 = 1\ 0111011 = -59_{10}$$

	0	0	1	0	0	1	0	1	прямой код числа 37
$37_{10} + 48_{10}$	0	0	1	1	0	0	0	0	прямой код числа 48
	0	1	0	1	0	1	0	1	результат

	0	0	1	0	0	1	0	1	прямой код числа 37
	1	1	0	1	1	0	1	0	обратный код числа 37
48 ₁₀ - 37 ₁₀	1	1	0	1	1	0	1	1	дополнительный код числа 37
	0	0	1	1	0	0	0	0	прямой код числа 48
	0	0	0	0	1	0	1	1	результат

Подумай лучше!

Пример

<u>Задание</u>