## Кодирование числовой информации.

Системы счисления.

Представление чисел в компьютере.

## Системы счисления, применяемые для представления числовых данных в ЭВМ

Под системой счисления понимается способ представления любого числа посредством некоторого алфавита символов, называемых цифрами.

Как известно, системы счисления (СС) бывают позиционные и непозиционные.

В позиционной системе счисления в зависимости от положения (разряда) в котором находится число оно имеет разное значение. Например: 123 ("1"- сотни,"2"- десятки,"3"-единицы)

В непозиционных системах счисления число не меняет своего значения в зависимости от позиции. Например: XXV, XVI, VII(V везде значит – 5)

? Числовые данные обрабатываются в компьютере в двоичной системе счисления. Числа хранятся в оперативной памяти в виде последовательностей нулей и единиц, т.е. в двоичном коде.

## Системы счисления, применяемые для представления числовых данных в ЭВМ

В позиционной системе счисления числа записываются в виде последовательности цифр:

$$\mathbf{A} = \mathbf{a}_{\mathbf{m}-1} \, \mathbf{a}_{\mathbf{m}-2} \dots \mathbf{a}_{1} \, \mathbf{a}_{0'} \, \mathbf{a}_{-1} \, \mathbf{a}_{-2} \, \mathbf{a}_{-3} \dots \mathbf{a}_{-n}. \tag{1}$$

Записанную выше последовательность цифр (1), соответствующую числу А, можно представить в виде полинома (2) от основания q:

$$A = a_{m-1} + q^{m-1} + a_{m-2} q^{m-2} + \dots + a_1 q^{n-2} + a_0 q^{n-2} + \dots + a_1 q^{n-1} + a_0 q^{n-1} + a_1 q^$$

Основание системы счисления определяет ее название, например, q = 10 – десятичная система счисления, а q = 2 – двоичная.

В ЭВМ применяют позиционные системы счисления с недесятичным 4 основанием: двоичную, восьмеричную, шестнадцатеричную.

## Системы счисления, применяемые для представления числовых данных в ЭВМ

Принятые обозначения:

```
двоичная СС - (A)_{2'} десятичная СС - (A)_{10'} восьмеричная СС - (A)_{8'} шестнадцатеричная СС - (A)_{16}.
```

#### Позиционные системы счисления

Основание системы равно количеству цифр (знаков) в ее алфавите

| Система счисления | Основание | Алфавит цифр                                   |
|-------------------|-----------|------------------------------------------------|
| Десятичная        | 10        | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9                   |
| Двоичная          | 2         | 0, 1                                           |
| Восьмеричная      | 8         | 0, 1, 2, 3, 4, 5, 6, 7                         |
| Шестнадцатеричная | 16        | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F |

Позиция цифры в числе называется разрядом

## Соответствие систем Счисления

| Десятичная            | 0 | 1 | 2  | 3  | 4   | 5   | 6   | 7   |
|-----------------------|---|---|----|----|-----|-----|-----|-----|
| Двоичная              | 0 | 1 | 10 | 11 | 100 | 101 | 110 | 111 |
| Восьмерична<br>я      | 0 | 1 | 2  | 3  | 4   | 5   | 6   | 7   |
| Шестнадцатер<br>ичная | 0 | 1 | 2  | 3  | 4   | 5   | 6   | 7   |

| Десятичная            | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16    |
|-----------------------|------|------|------|------|------|------|------|------|-------|
| Двоичная              | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | 10000 |
| Восьмеричн<br>ая      | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 20    |
| Шестнадцатер<br>ичная | 8    | 9    | A    | В    | С    | D    | E    | F    | 10    |

## Системы счисления, применяемые для представления числовых данных в ЭВМ

**В двоичной системе счисления** любое число в соответствии с (1) и (2) может быть представлено последовательностью двоичных цифр (3) или суммой степеней числа 2, взятых с указанными в ней коэффициентами (4).

$$X = a_{m-1} a_{m-2} \dots a_1 a_{0'} a_{-1} a_{-2} a_{-3} \dots,$$
 (3) где  $a_i = \{0,1\};$ 

$$X = a_{m-1}^{*} 2^{m-1} + \dots + a_{1}^{*} 2^{1} + a_{0}^{*} 2^{0} + a_{-1}^{*} 2^{-1} + a_{-2}^{*} 2^{-2} + \dots + a_{-n}^{*} 2^{-n}$$
 (4)

Например, двоичное число 1010,001 будет представлено следующим образом:

$$(1110,001)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 0 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

## Системы счисления, применяемые для представления числовых данных в ЭВМ

**В восьмеричной системе счисления** используется восемь цифр: 0,1,2,3,4,5,6,7. Любое число в восьмеричной системе может быть представлено последовательностью цифр или суммой степеней числа 8.

$$(A)_8 = (157,34)_8 = 1 \cdot 8^2 + 5 \cdot 8^1 + 7 \cdot 8^0 + 3 \cdot 8^{-1} + 4 \cdot 8^{-2}$$

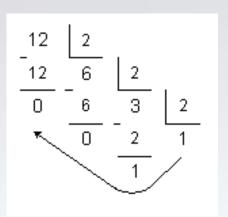
В шестнадцатеричной системе счисления для изображения чисел употребляются 16 цифр от 0 до 15. При этом, чтобы одну цифру не изображать двумя знаками, введены обозначения для цифр, больших девяти, латинскими буквами: десять – А, одиннадцать – В, двенадцать – С, тринадцать - D, четырнадцать – Е, пятнадцать – F.

9 
$$(A)_{16} = (2AF)_{16} = 2 \cdot 16^2 + 10 \cdot 16^1 + 15 \cdot 16^0$$

#### Перевод целых чисел

Для перевода целого числа А, представленного в системе счисления с основанием q, в систему счисления с основанием S необходимо данное число и получаемые частные последовательно делить на новое основание системы счисления до тех пор, пока последнее частное не будет меньше S. Число А в системе счисления с основанием S представится в виде упорядоченной последовательности остатков деления, причем старшую цифру дает последнее частное.

$$(12)_{10} = (1100)_2$$



#### Перевод дробных чисел

Перевод дробных чисел заключается в последовательном умножении дроби на основание новой системы счисления, причем перемножению подвергаются только дробные части результата. Дробь в новой системе счисления представляется в виде упорядоченной последовательности целых частей произведений, где старший разряд является первой цифрой произведения.

$$(0.325)_{10} = (0.0101)_{2}$$

 $\begin{array}{r}
 \frac{2}{0,650} \\
 \frac{2}{1,300} \\
 \frac{2}{0,600} \\
 \frac{2}{1,200}
 \end{array}$ 

ПЕРЕВОД 
$$(A)_8 \longrightarrow (A)_2$$

Для перевода восьмеричного числа в двоичное достаточно каждую цифру числа заменить трехразрядным двоичным числом.

При этом отбрасывают нули, стоящие слева от старшей значащей цифры и справа от младшей значащей цифры двоичного кода.

$$1 \cdot 8^2 + 7 \cdot 8^1 + 5 \cdot 8^0 + 6 \cdot 8^{-1} = 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2}$$

$$(175,6)_8 = (125,75)_{10}$$
,  $(11111101,11)_2 = (125,75)_{10}$ 

ПЕРЕВОД 
$$(A)_{16} \rightarrow (A)_{2}$$

Для перевода шестнадцатеричного числа в двоичное достаточно заменить каждую цифру числа четырехразрядным двоичным кодом.

 $(2CF,5)_{16} = (1011001111,0101)_2$ 

ПЕРЕВОД 
$$(A)_2 \longrightarrow (A)_8 \ _{\text{и}} \ (A)_2 \longrightarrow (A)_{16}$$

- перевод двоичного числа 110101,01 в восьмеричное:

$$110 \quad 101 \quad 010 = (65,2)_2$$

- перевод двоичного числа 111000110,101 в шестнадцатеричное

$$\underbrace{0001}_{1} \quad \underbrace{1100}_{C} \quad \underbrace{0110}_{6} \quad , \quad \underbrace{1010}_{A} = (1C6, A)_{16}$$

**При представлении чисел с фиксированной запятой** положение запятой (точки) фиксировано относительно разрядов числа и сохраняется неизменным для всех чисел.

Запятая отделяет целую часть числа от дробной.

Если дробная часть отсутствует, то число – целое.

Для кодирования знака используется знаковый разряд («0» для положительных чисел и «1» – для отрицательных).

Целые числа в компьютере хранятся в памяти в формате *с фиксированной запятой*. В этом случае каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда, т.е. вне разрядной сетки.

|   | 877.0 |   |   |   | V893 |   |   |
|---|-------|---|---|---|------|---|---|
| 1 | 0     | 1 | 0 | 1 | 0    | 1 | 0 |

Для хранения целых неотрицательных чисел отводится одна ячейка памяти (8 бит). Например, число  $A_2$  =  $10101010_2$  будет хранится в ячейке памяти следующим образом:

Максимальное значение целого неотрицательного числа достигается в случае, когда во всех ячейках хранятся единицы. Для n-разрядного представления оно будет равно:

 $2^{n} - 1$ 

Для хранения целых чисел со знаком отводится две ячейки памяти (16 бит), причем старший (левый) разряд отводится под знак числа (если число положительное, то в знаковый разряд записывается 0, если число отрицательное записывается 1).

Представление в компьютере положительных чисел с использованием формата «знак-величина» называется *прямым кодом* числа. Например, число  $2002_{10}$  =  $11111010010_2$  будет представлено в 16-ти разрядном представлении следующим образом:

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Для получения дополнительного кода отрицательного числа можно использовать довольно простой алгоритм:

- 1. Модуль числа записать *прямым кодом* в *п* двоичных разрядах;
- 2. Получить *обратный код* числа, для этого значения всех бит инвертировать (все единицы заменить на нули и все нули заменить на единицы);
- 3. К полученному обратному коду прибавить единицу.

**Пример.** Записать дополнительный код отрицательного числа –2002 для 16-ти разрядного компьютерного представления с использованием алгоритма.

| Прямой код         | -2002 <sub>10</sub> | $00000111111010010_2$                                             |
|--------------------|---------------------|-------------------------------------------------------------------|
| Обратный код       | инвертирование      | 1111100000101101 <sub>2</sub>                                     |
|                    | прибавление единицы | 1111100000101101 <sub>2</sub><br>+000000000000000001 <sub>2</sub> |
| Дополнительный код |                     | 11111000001011110 <sub>2</sub>                                    |

Если для представления числа со знаком выделено n разрядов, то диапазон представления целых двоичных чисел в этом случае определяется выражением

$$1 \leq \left| X_{\phi,s.}^{\mathcal{I}} \right| \leq 2^{n-1} - 1.$$

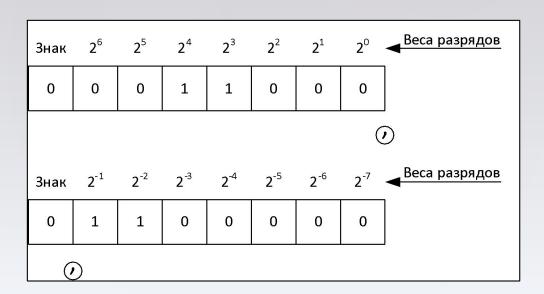
Диапазон представления в ЭВМ дробных двоичных чисел будет определяться неравенством

$$2^{-(n-1)} \le |X_{\phi,s.}^{np.}| \le 1 - 2^{-(n-1)}$$

или приближенно

$$0 \le \left| \mathbf{X}_{\phi.s.} \right| < 1.$$

Разрядная сетка ЭВМ в формате 8-разрядного машинного слова для представления соответственно целого двоичного числа ( = +11000) и дробного числа ( = +0,11) в форме с фиксированной запятой:



Пусть задано число  $(X)_2 = -100010$ .

Целое число (X), в формате (n=7 со знаком):

| Знак | 2 <sup>5</sup> | $2^4$ | 2 <sup>3</sup> | $2^2$ | 2 <sup>1</sup> | $2^0$ |
|------|----------------|-------|----------------|-------|----------------|-------|
| 1    | 1              | 0     | 0              | 0     | 1              | 0     |

• Целое число  $(X)_2$  в формате (n=8 со знаком):

| Знак | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
|------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1    | 0              | 1              | 0              | 0              | 0              | 1              | 0              |

• Дробное число  $(X)_2$  в формате (n=8 со знаком):

| Знак | 2 <sup>-1</sup> | 2 <sup>-2</sup> | 2 <sup>-3</sup> | 2-4 | 2 <sup>-5</sup> | 2 <sup>-6</sup> | 2 <sup>-7</sup> |
|------|-----------------|-----------------|-----------------|-----|-----------------|-----------------|-----------------|
| 1    | 1               | 0               | 0               | 0   | 1               | 0               | 0               |

#### Представление двоичных чисел в форме с плавающей запятой

плавающей запятой Вещественные числа (конечные и бесконечные десятичные дроби) хранятся и обрабатываются в компьютере в формате с плавающей запятой. В этом случае положение запятой в записи числа может изменяться.

Формат чисел с плавающей запятой базируется на экспоненциальной форме записи, в которой может быть представлено любой число. Так число А может быть представлено в виде:

$$A = m \times q^n$$

где т – мантисса числа

q – основание системы счисления,

n – порядок числа.

Для однозначности представления чисел с плавающей запятой используется нормализованная форма, при которой мантисса отвечает условию:

$$1/n \le |m| < 1$$
.

Это озвачает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля.

#### Представление двоичных чисел в форме с плавающей запятой

Запятая при представлении мантиссы фиксируется перед старшим значащим разрядом. Порядок Р указывает положение запятой в числе, может быть положительным или отрицательным целым числом или целым числом без знака (запятая при представлении порядка фиксируется после младшего разряда). Порядок Р и мантисса т представляются в системе счисления с основанием q.

#### Форматы представления в ЭВМ чисел с плавающей запятой



**Прямой код** чисел соответствует обычной записи чисел со своим знаком:

$$A_1 = +0.0101$$
,  $[A_1]_{\pi p} = 00101$ ;  $A_2 = -0.0101$ ,  $[A_2]_{\pi p} = 10101$ .

Для целых чисел в двоичной системе счисления:

$$A_1 = +1100, \quad [A_1]_{\pi p} = 01100;$$
  
 $A_2 = -1100, \quad [A_2]_{\pi p} = 11100.$ 

Нуль в прямом коде имеет два изображения:

$$+0 = 000...00 = [0]_{np'}$$
  
 $-0 = 100...00 = [0]_{np}$ 

**Обратный код.** Чтобы представить двоичное отрицательное число в обратном коде, нужно поставить в знаковый разряд единицу, а все остальные разряды инвертировать:

$$A = -0.1010$$
.  $[A]_{obp} = 10101$ .

Примеры обратного кода отрицательных дробного и целого чисел:

```
A^{Ap}=-0,11001;
[A^{Ap}]_{\pi p}=111001;
[A^{Ap}]_{o o p}=100110;
A^{\mu}=-10101;
[A^{\mu}]_{\pi p}=110101;
[A^{\mu}]_{o o p}=101010;
[A^{\mu}]_{o o p}=101010;
```

**Дополнительный код.** Для представления отрицательного числа в дополнительном коде нужно поставить единицу в знаковом разряде, затем найти крайнюю правую единицу и заменить на противоположные разряды слева (до знака). Остальное не менять. Примеры:

$$[A]_{np}^{mp} = 1110010; \quad [A]_{mon}^{mp} = 10011110,$$
 $[A]_{np}^{u} = 10011110; \quad [A]_{mon}^{u} = 11100110,$ 
 $[A]_{np}^{u} = 1001001; \quad [A]_{don}^{u} = 11101111.$ 

**Правило** перевода отрицательных чисел из обратного кода в дополнительный:

дополнительный код отрицательного числа может быть получен из обратного путем прибавления к нему единицы младшего разряда. Примеры:

$$\begin{split} & [A]_{\pi p} = 1.01010; & [A]_{\pi p} = 1.11101; \\ & [A]_{oбp} = 110101; & [A]_{oбp} = 100010; \\ & [A]_{_{\!A\!O\Pi}} = 110110, & [A]_{_{\!A\!O\Pi}} = 100011. \end{split}$$

Отрицательный нуль изображается:

- в обратном коде  $[-0]_{\text{обр}}$  = 1.11111...11;
- в дополнительном коде отрицательный нуль отсутствует, т.е. код нуля в<sup>2</sup>дополнительном коде соответствует коду нуля положительного числа.

# Положительные числа в прямом, обратном и дополнительных кодах имеют одинаковую форму записи!!!

Модифицированный код. При выполнении арифметических операций в ЭВМ иногда возникает необходимость для представления знака числа использовать не один, а два знаковых разряда. Модифицированный код отличается от обычного двумя разрядами для знака. Примеры:

$$\begin{bmatrix} A_1 \end{bmatrix}_{\text{пр.}} = 1 \ 01001, \ \begin{bmatrix} A_1 \end{bmatrix}_{\text{пр. мод.}} = 11 \ 01001, \ \begin{bmatrix} A_1 \end{bmatrix}_{\text{обр. мод.}} = 11 \ 10110, \ \begin{bmatrix} A_3 \end{bmatrix}_{\text{доп.}} = 1 \ 10111, \ \begin{bmatrix} A_3 \end{bmatrix}_{\text{доп. мод.}} = 11 \ 10111.$$