Задачи нахождения кратчайшего пути

Определения

■ Пусть дан ориентированный взвешенный граф $G = \langle V, E \rangle$ с весовой функцией $w : E \to R$ Весом пути $p = \{v_0, v_1, [], v_n\}$ называется сумма весов ребер, входящих в этот путь:

$$w(p) = \sum_{i=1}^{n} w(v_{i-1}, v_i)$$

Определения

Вес кратчайшего пути из u в v равен

$$\delta(u,v) = \begin{cases} \min\{w(p): u \to v\} & \text{если существует} \\ \infty, \text{ иначе} \end{cases}$$

Определения

Кратчайший путь из и в v - это любой путь p из u и v, для которого

$$w(p) = \delta(u, v)$$

Варианты задач о кратчайшем пути

- Кратчайший путь из одной вершины:
 Дан взвешенный граф G=<V,E>
 и начальная вершина s.
 Требуется найти кратчайшие пути из s во все вершины v∈V
- Кратчайшие пути в одну вершину:
 Дана конечная вершина t.
 Требуется найти кратчайшие пути в t
 из всех вершин v∈V

Варианты задач о кратчайшем пути

U B **V**

- Кратчайший путь между парой
 вершин:
 Даны вершины и и.
 Требуется найти кратчайший путь из
- Кратчайшие пути для всех пар вершин:
 Для каждой пары вершин и и и найти кратчайший путь из и в и

Варианты задач о кратчайшем пути

- Часто в задачах бывает необходимо найти не только кратчайший путь, но и сам путь.
- Для каждой вершины v будем помнить ее предшественников п(v)

Свойства кратчайших путей

 Лемма 1. (отрезки кратчайших путей являются кратчайшими) Пусть дан ориентированный взвешенный граф $G = \langle V, E \rangle$ с весовой функцией $w: E \to R$ Если $p(v_1, v_2, ..., v_k)$ кратчайший путь из v₁ в vҝ и 1≤i≤j≤k, TO

$$p_{ij} = (v_i, v_{i+1}, ..., v_j) -$$
 кратчайший путь из v_i в v_j

Свойства кратчайших путей

 Следствие 1 Пусть дан ориентированный взвешенный граф $G=\langle V,E\rangle$ с весовой функцией $w: E \to R$ Рассмотрим кратчайший путь **р** из **s** в V. Пусть $u \rightarrow v$ – последнее ребро этого пути. Тогда

 $\delta(s, v) = \delta(s, u) + w(u, v)$

Свойства кратчайших путей

Лемма 2

Пусть дан ориентированный взвешенный граф G=<V,E> с весовой функцией $w:E\to R$ Пусть $s\in V$ Тогда для всякого ребра $(\mathbf{u},\mathbf{v})\in E$

$$\delta(s, v) \le \delta(s, u) + w(u, v)$$

Релаксация

Для каждого ребра *v∈V* будем хранить некоторое число *d[v]*, являющееся верхней оценкой веса кратчайшего пути из вершины s в v (оценка кратчайшего пути)

Релаксация

- Начальное значение оценки кратчайшего пути и массива п определяется следующим образом:
- Initialize(G,s)

Для всех вершин
$$v \in V$$

$$d[v] = \infty$$

$$\pi[v] = NULL$$

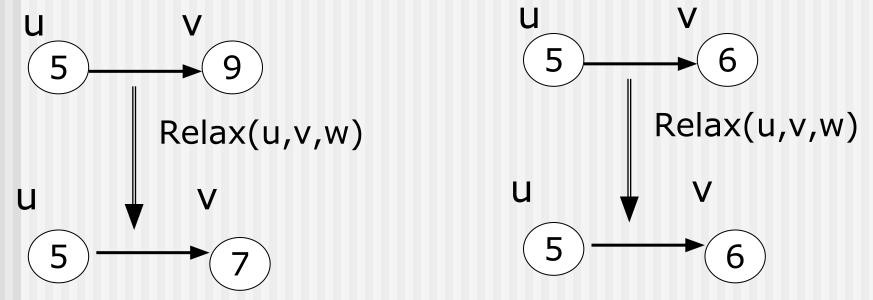
$$d[s] = 0$$

Релаксация

Релаксация ребра (u, v) состоит в следующем:

Значение d[v] уменьшается до d[u]+w(u,v), если второе значение меньше первого При этом $\Pi(v)=u$

Relax(u,v,w)



В вершинах указаны оценки кратчайшего пути

- Решает задачу о кратчайших путях из одной вершины s графа
 G=<V,E> с весовой функцией w до всех остальных вершин графа.
- Веса всех ребер неотрицательны

- Алгоритм строит множество S вершин V, для которых кратчайшие пути до вершины S уже известны, т. е. d[v]=δ(s,v)
- На каждом шаге к множеству S
 добавляется та из оставшихся
 вершин u, для которой d[u] имеет
 наименьшее значение
- После этого проводится релаксация всех ребер, выходящих из *u*

- Вершины, не лежащие в множестве S, хранятся в очереди с приоритетами, определяемыми значениями функции d.
- Пусть граф представлен списками смежности
 Adj[u] –список смежных вершин и
 Q очередь с приоритетами

```
Initialize(G,s)
 S = \emptyset
  Q=V[G]
  while Q<>Ø
    do u=min(Q) — выбираем вершину с
       наименьшим значением d[u]
       S=S U \{u\}
       for для всех вершин ∨∈Adj[u]
          do Relax(u,v,w)
```