

СОДЕРЖАНИЕ

- Основные положения
- Дискретизация массы
- Вычислительный цикл
- Явная схема интегрирования
- Вычисление напряжений и сил

ОСНОВНЫЕ ПОЛОЖЕНИЯ

- Дискретизация пространственного объекта с помощью конечных элементов
 - Объёмные (3D) элементы
 - Оболочечные (2D) элементы
 - Стержневые (1D) элементы
 - Дискретные элементы пружины, демпферы и жёсткие тела
- Сетка "скреплена" с материалом и движется вместе с ним;элементы деформируются при деформировании материала
- Лагранжевы элементы имеют неизменную массу
- Конечные элементы сопрягаются друг с другом посредством общих узлов
- Скорость движения материала определяется скоростью движения узлов
- 🔲 Силы прилагаются к узлам
- Напряжения определяются (вычисляются) в центре элемента

МЕТОД ДИСКРЕТИЗАЦИИ МАССЫ

Инерционные свойства элементов представляются сосредоточенными массами в узлах

Масса из этой области сосредотачивается в центральном узле

- 🔲 Силы прикладываются к узлам
 - Инерционные силы
 - Силы упругости деформированных элементов
 - Внешние силы
 - Силы взаимодействия
- Моментные силовые факторы также вычисляются для узлов с 6 степенями свободы

вычислительный цикл

Ускорения узлов

Интегрирование методом центральных

разностей

Узловые скорости

Положение узлов в пространстве

Формулировка элемента

Скорость деформации элемента

Модель состояния материала

Напряжения в элементе

Формулировка элемента

Элементарные усилия в узлах

Внешние силы

ЯВНАЯ СХЕМА ИНТЕГРИРОВАНИЯ

Ускорение узлов вычисляется по формуле

$$M \cdot a_n = F^{\text{ext}} - F^{\text{int}}$$

где *М* – матрица масс;

 F^{ext} – внешние нагрузки;

 ${\it F}^{int}$ – внутренние силы, "генерируемые" элементами

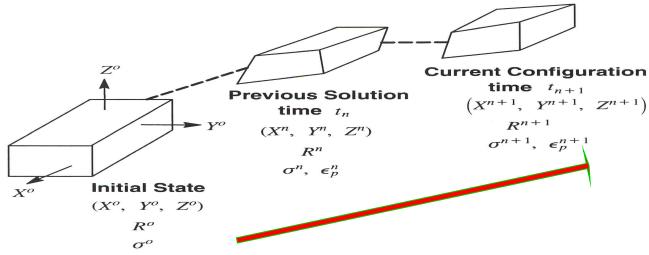
- 🔲 Матрица *М* диагональная
 - Нет необходимости в обращении матриц, т.к. уравнения независимы:

$$a_n = (F^{\text{ext}} - F^{\text{int}})/m$$

где m — масса, относящаяся к узлу

- "Продвижение" во времени выполняется с использованием метода центральных разностей
 - Вычисляются скорости узлов в момент времени n+1/2

$$V_{n+1/2} = V_{n-1/2} + a_n (\Delta t_{n+1/2} + \Delta t_{n-1/2})/2$$


• Вычисляются координаты узлов в момент времени n+1

$$d_{n+1} = d_n + V_{n+1/2} \Delta t_{n+1/2}$$

ВЫЧИСЛЕНИЕ НАПРЯЖЕНИЙ И СИЛ

 Значения переменных при t=t_n используются для вычисления значений в момент времени t=t_{n+1}

- 🔲 "Обновлённый" Лагранжиан
 - Х,Ү,Z координаты узлов
 - R матрица вращений
 - о напряжения
 - ε_p пластические деформации

ВЫЧИСЛЕНИЕ НАПРЯЖЕНИЙ И СИЛ

- Вычисляются координаты (при t_{n+1}) и скорости (при t_{n+1/2})
- С использованием скоростей узлов при t_{n+1/2} вычисляется скорость изменения деформаций
- С использованием скорости изменения деформаций вычисляется приращение величины деформаций
- Выполняется корректировка составляющих напряжений (σⁿ), учитывающая поворот элемента как твёрдого тела вместе с поворотом подвижной системы координат
- С использованием инкрементов деформаций в подвижной системе координат и модели состояния материала вычисляются приращения напряжений Δσ^{n+1/2}
- □ Суммируя "откорректированные" (с учётом поворота подвижной системы координат) напряжения и их приращения, вычисляют напряжения при t= t_{n+1}

$$\sigma^{n+1} = \sigma^n_{\text{rotated}} + \Delta \sigma^{n+1/2}$$

□ С использованием "новых" значений напряжений вычисляются внутренние силы в узлах

