

Семинар NAS101 | 2006 | MSC.Software Corporation Постоянное представительство в СНГ Москва

Раздел 7

Линейный анализ устойчивости

Теория устойчивости

Запишем уравнение равновесия конструкции, к которой приложена система постоянных сил, в следующем виде:

$$[K]\{u\} = \{P\}$$

 Рассмотрим эффект дифференциальной (геометрической) жесткости. *Дифференциальная жесткость* [K_d] появляется в результате учета членов высокого порядка в зависимостях деформация-перемещение. Эти зависимости подразумевают, что перемещения в конструкции не зависят от интенсивности нагрузки.

Теория устойчивости (продолжение)

 Пусть λ произвольный скалярный множитель для другой "интенсивности" нагрузки.

$$([K] + \lambda [K_D])\{u^*\} = \{\lambda P\}$$

 При нагружении конструкции данной силой с различной интенсивностью, могут быть найдены несколько положений неустойчивого равновесия. Эти положения равновесия являются решениями задачи на собственные значения.

$$([K] + \lambda [K_D]) \{ \delta u^* \} = 0$$

Решение задачи на собственные значения

$$[K - \lambda K_d] \{ \varphi \} = 0$$
 (1)

• Решение нетривиально (отлично от нуля) только для определенных значений $\lambda = \lambda_i$ для i = 1, 2, 3, ..., n,

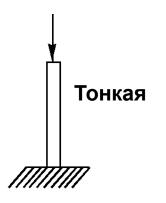
которые делают матрицу [$K - \lambda K_d$] сингулярной.

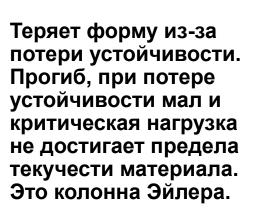
Решение задачи на собственные значения (продолжение)

- Каждому собственному значению λ_i, соответствует единственный собственный вектор { φ_i }.
- { φ_i } может быть масштабирован с помощью любого скалярного множителя и по прежнему оставаться решением уравнения (1).
- Компоненты вектора { ϕ_i } вещественные числа.

Последовательности решений для задач устойчивости

- SOL 105 Линейная устойчивость
- SOL 106 Нелинейная устойчивость
- Ограничения для SOL 105
 - Требования к конструкции до потери устойчивости:
 - Перемещения должны быть малы.
 - Напряжения должны быть в упругой области (и линейно зависеть от деформаций).





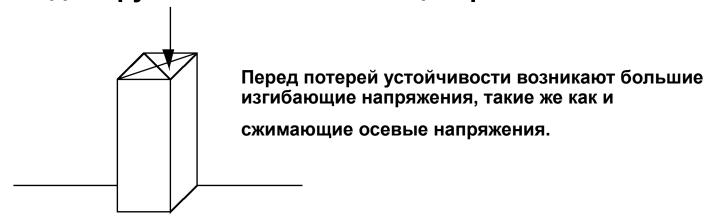
Последовательности решений для задач УСТОЙЧИВОСТИ (продолжение)

Пример: Три класса колонн (под центральной нагрузкой, материал без дефектов)

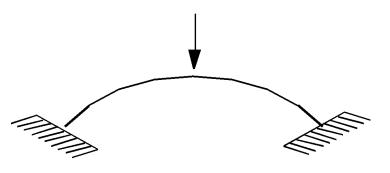
Причина потери формы - комбинация текучести и потери устойчивости. Прогиб при потере устойчивости мал, но некоторые напряжения превышают предел упругости материала.

Причина потери формы – текучесть (также, как при тестовом сжатии образца)

Последовательности решений для задач устойчивости (продолжение)


• Примечание:

- SOL 105 может применяться для конструкций с небольшими дефектами материала или с очень малым эксцентриситетом нагрузки (например, когда нагрузка направлена не строго в центр и приводит к небольшому изгибу).


 Здесь инженеру надо исходить из здравого смысла.
- Те же соображения применимы при анализе пластин.

Примеры нелинейного анализа устойчивости

• Колонна под нагрузкой с большим эксцентриситетом

• Прощелкивание тонкой оболочки (подобно дну бака)

Перед потерей устойчивости возникают большие прогибы, и возможно не упругое поведение конструкции.

Правила для анализа устойчивости **SOL 105**

- (Для справки необходимо смотреть раздел 13, MSC NASTRAN Linear Statics Users Guide)
- Секция CASE CONTROL должна содержать не менее двух SUBCASE.
- Запросы на вывод, которые относятся только к решению статической задачи должны быть помещены в первом SUBCASE.
- METHOD должен появиться в отдельном SUBCASE для выбора записей EIGB или EIGRL из секции BULK DATA для решения задач устойчивости.
- Если имеется несколько статических решений, тогда используйте команду STATSUB для выбора варианта одного из статических решений для дальнейшего решения задачи устойчивости.

Правила для анализа устойчивости SOL 105 (продолжение)

- Если необходимо, могут использоваться различные условия в SPC узлах в SUBCASE статического решения и SUBCASE решения задачи устойчивости.
- Запросы на вывод могут быть помещены в любом выбранном SUBCASE.
- Запросы на вывод, действующие одновременно и в статическом расчете и в анализе устойчивости могут быть помещены выше уровня SUBCASE.

Записи для линейного анализа устойчивости

Секция EXECUTIVE CONTROL

SOL 105

Секция CASE CONTROL

SUBCASE 1 LOAD = M

Определяет условия статического нагружения (LOAD,

TEMP, DEFORM)

SUBCASE 2

Выбирает метод нахождения собственных

значений

METHOD = N

Выбирает SUBCASE статического решения чтобы

STATSUB = i

использовать его для решения задачи устойчивости (по

умолчанию берется первый SUBCASE)

Записи для линейного анализа устойчивости (продолжение)

- Секция CASE CONTROL должна содержать не менее двух SUBCASE.
- Секция BULK DATA
- Определение условий статического нагружения
- **EIGB** Данные для нахождения собственного значения или
- **EIGRL** Данные для нахождения собственного значения по методу Ланцоша.

Запись EIGRL

- EIGRL Рекомендуемая запись для расчета устойчивости
 - Определяет данные, необходимые для проведения решения задачи на собственные значения и анализа устойчивости методом Ланцоша.

1	2	3	4	5	6	7	8	9	10
EIGRL	SID	V1	V2	ND	MSGLVL	MAXSET	SHFSCL	NORM	
EIGRL	1	0.1	3.2	10					

Запись EIGRL (продолжение)

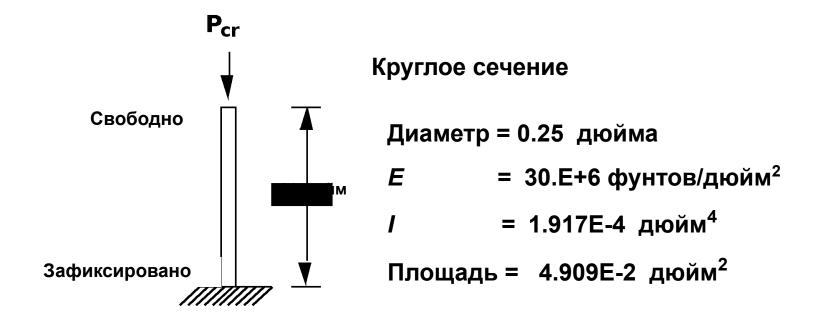
<u>Поле</u>

Содержание

- SID Идентификатор набора (уникальное целое число > 0)
- V1, V2 Анализ вибрации: диапазон интересующих частот.

Анализ устойчивости: диапазон интересующих I.

Если необходимы все моды ниже определенной частоты, то установите V2 на это значение и оставьте V1 пустым.


Не рекомендуется приравнивать V1 к нулю. Эффективнее использовать небольшое отрицательное значение или оставить его пустым.

- ND Число необходимых корней (целое > 0 или оставлять чистым)
- MSGLVL Уровень диагностики (целое, от 0 до 3 или оставлять чистым)
- MAXSET Число векторов в блоке (целое, от 1 до 15 или оставлять чистым)

Пример - простая колонна Эйлера

• Задача:

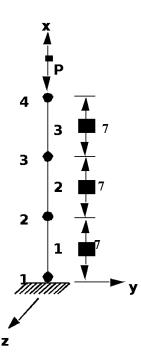
• Найти критическую нагрузку и соответствующую ей первую форму потери устойчивости цилиндрического стержня.

Пример - простая колонна Эйлера

(продолжение)

• Теоретическое решение

$$P_{cr} = \frac{\pi^2 EI}{L_{eff}^2} = 32,18 \, \text{фунта}$$


где L_{eff} – эффективная длина колонны

 $L_{\text{eff}} = 2L$ – для свободно опертой колонны

Пример - простая колонна Эйлера

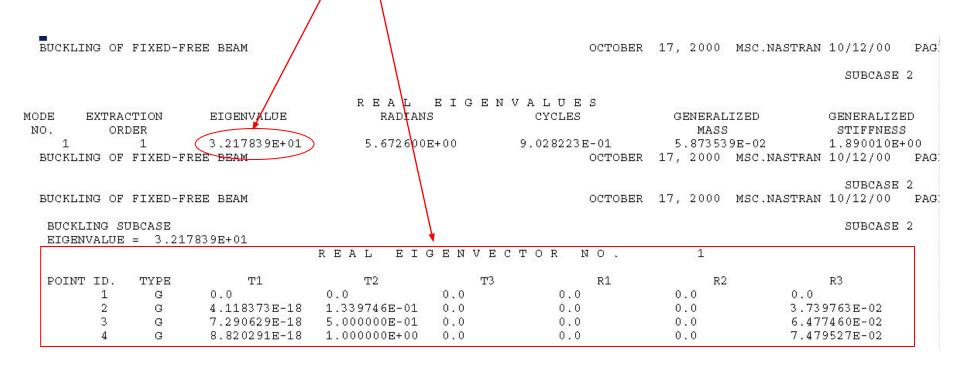
(продолжение)

Модель MSC Nastran

Решение MSC Nastran

Значение силы в записи FORCE

Р_{сг} = □32.18 ×1.0 = □32.18 фунта


Собственное значение

Пример – простая колонна Эйлера – входной файл

```
sol 105
cend
title = buckling of fixed-free beam
disp = all
echo = punch
spc = 10
subcase 1
 label = static subcase
 load = 5
subcase 2
 label = buckling subcase
 method = 100
begin bulk
                                                               1.
         1
                                             0.
                                                      0.
CBEAM
                  1
                                             0.
                                                      0.
                                                                1.
CBEAM
                                                      0.
                                             0.
                                                               1.
CBEAM
         100
EIGRL
         5
                                    1.
                                             -1.
FORCE
                  4
         1
                           0.
                                    0.
                                             0.
                                                               345
GRID
                           7.
                                                               345
GRID
                                    0.
                                             0.
                           14.
                                                               345
GRID
                                    0.
                                             0.
                           21.
                                                               345
GRID
                                    0.
                                             0.
                                     .33
MAT1
                  30.E6
                           4.909E-21.917E-41.917E-4
                                                               3.835E-4
PBEAM
         10
                  123456
SPC1
                           1
enddata
```

Пример – простая колонна Эйлера – выходной файл

- Первое собственное значение: $Pcr = \lambda_1 \times 10$ фунтов = 32.18 фунта
- Первый собственный вектор (дает форму потери устойчивости)

Литература по анализу устойчивости

- MSC Seminar Notes, "MSC NASTRAN Material and Geometric Nonlinear Analysis":
- MSC Nastran Linear Static Analysis Users Guide, Section 13.
- MSC Nastran Verification Problem Manual (Version 64, January 1986 Edition):
 - Problem 3.0501A, "Lateral Buckling of a Cantilever Beam"
 - Problem 3.0502A, "Simple Frame Analysis with Buckling"
 - Problem 3.7701S, "Euler Buckling of a Simply Supported Beam"

Литература по анализу устойчивости

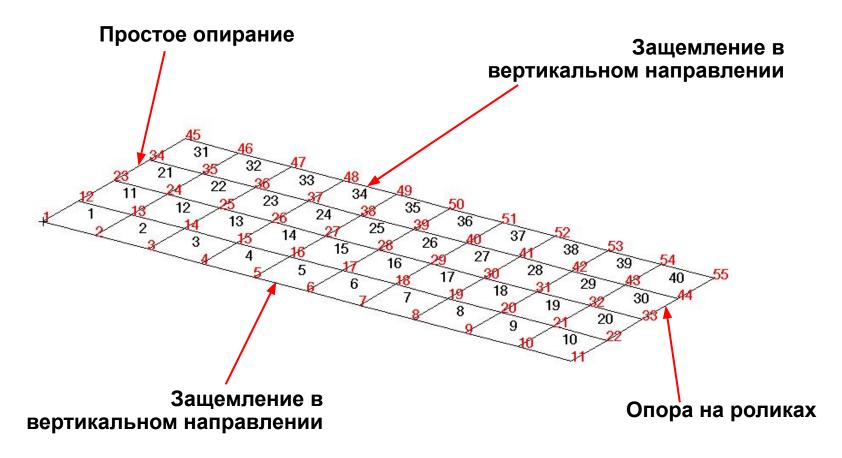
(продолжение)

- MSC Nastran Demonstration Problem Manual
 - (Version 64, March 1985 Edition):
 - Under Elastic Stability Analysis, see Demonstration Problem D0504A, "Flexural Buckling of a Beam"
- MSC Nastran Application Notes
 - October 1978 "Buckling and Real Eigenvalue Analysis of Laminated Plates"
 - September 1979 "Static Stability of Structures with Nonlinear Differential Stiffness"
 - February 1982 "Elastic-Plastic Buckling of a Thin Spherical Shell"
 - November 1985 "Nonlinear Buckling Analysis"

Семинар NAS101 | 2006 | MSC.Software Corporation Постоянное представительство в СНГ Москва

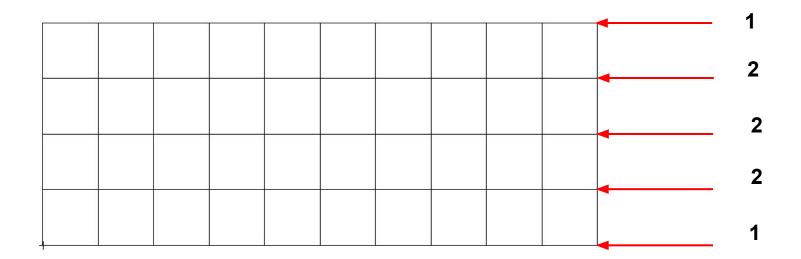
Пример 9

Анализ устойчивости пластины


Пример 9 (продолжение)

• Описание модели

- Та же самая модель панели, что и в примере 5, без подкреплений.
- В этой модели применены следующие граничные условия:
 - Опирание на левом конце
 - "Ролики" на правом конце
 - Нулевые вертикальные перемещения на верхней и нижней гранях
- Приложим 100 фунт/дюйм2 сжимающие нагрузки к правому краю пластины
 - Общая нагрузка на правой стороне = (100) (8) (.01) = 8
 - Приложим 1 фунт в каждый из узлов 11 и 55 сетки
 - Приложим 2 фунта в каждый из узлов 22, 33 и 44 сетки

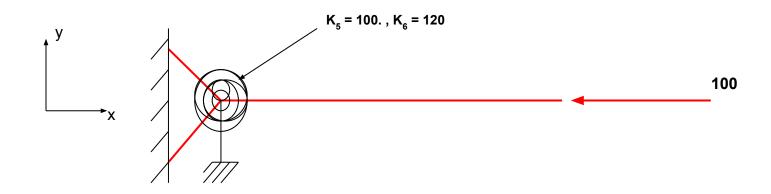

Пример 9 (продолжение)

– Граничные условия

Пример 9 (продолжение)

– Приложенные нагрузки

Жесткие элементы Лагранжа


- Новые жесткие элементы Лагранжа поддерживают дифференциальную жесткость
- Новые жесткие элементы Лагранжа поддерживают задачи на устойчивость
- В настоящее время решение SOL 105 (линейная задача устойчивости) поддерживает только метод исключений Лагранжа (error 1-11842201)

Усовершенствования жестких элементов

(продолжение)

• Пример:

Анализ устойчивости модели двумя методами

- Жесткие элементы Лагранжа
- Жесткая балка

Усовершенствования жестких элементов

(продолжение)

```
Входной файл (элементы Лагранжа)
  lagrange1.dat
SOL 105
CEND
TITLE = BUCKLING ANALYSIS - RBAR
SUBTI = LAGRANGE ELIMINATION METHOD
DISP = ALL
SPC = 10
RIGID = LGELIM
SUBCASE 1
LABEL=STATIC PRELOAD CASE
LOAD = 100
SUBCASE 2
LABEL = BUCKLING CASE
 METHOD = 10
BEGIN BULK
EIGRL,10,,,10
FORCE,100,4,0,-100.0,1.0,0.0,0.0
CELAS2,101,100.0,3,5
CELAS2,102,120.0,3,6
GRID, 3 ,,2.0,0.0,0.0
GRID, 4 ,,4.0,0.0,0.0
RBAR, 3,3,4,123456, , ,123456
```

```
Входной файл (жесткие балки)
  lagrange2.dat
SOL 105
CEND
TITLE = BUCKLING ANALYSIS - USE STIFF BEAM
DISP = ALL
SPC = 10
SUBCASE 1
LABEL=STATIC PRELOAD CASE
LOAD = 100
SUBCASE 2
LABEL = BUCKLING CASE
 METHOD = 10
BEGIN BULK
EIGRL,10,..,10
FORCE,100,4,0,-100.0,1.0,0.0,0.0
CELAS2,101,100.0,3,5
CELAS2,102,120.0,3,6
CBEAM,100,100,3,4,0.,0.,1.
PBEAM,100,1,100.,100.,100.,100.
MAT1,1,1.E7,,.32
GRID, 3 ,,2.0,0.0,0.0
GRID, 4 ,,4.0,0.0,0.0
SPC1,10,1234,3
ENDDATA
```


SPC1,10,1234,3 **ENDDATA**

Усовершенствования жестких элементов

(продолжение)

• Результаты (жесткие элементы Лагранжа)

0	STATIC PRELOAD CASE											SUBCASE 1			
						D	ISPL	ACE	MENT	VEC	TOR				
	POINT	ID.	TYPE		T1		T2		Т3		R1		R2		R3
		3	G	0.0		0.0		0.0		0.0		0.0		0.0	
		4	G	0.0		0.0		0.0		0.0		0.0		0.0	
	101000	004	L	0.0		0.0		0.0		0.0		0.0		0.0	
							REAL	EIG	ENVA	LUE	S				
7.7	MODE EXTRACTION NO. ORDER		EIGENVALUE		RADIANS		CYCLES			170000000000000000000000000000000000000	RALIZED ASS		GENERALIZED STIFFNESS		
	1		1	5.00	0000E-01		7.071068	8E-01	1.	1253951	2-01	2.00	0000E+02		1.000000E+02
	2		2	6.00	0000E-01		7.745967	7E-01	1.	2328091	E-01	2.00	0000E+02		1.200000E+02

• Результаты (жесткие балки)

1 B	UCKL	ING ANALYSIS -	USE STIFF BEAM	JUNE	5, 2003	MSC.NASTRAN	6/ 2/03	PAGE	12	
0				h.				SUBCASE	2	
33337	MODE EXTRACTION EIGENVALUE NO. ORDER			REAL EIGE RADIANS	NVALUES CYCLES	GENERA: MAS:		GENERALIZI STIFFNESS	7.7	
	1 2	1 2	4.999999E-01 5.999998E-01	7.071067E-01 7.745966E-01	1.125395E-01 1.232809E-01	5.0000	10.00 (10	2.500000E+ 2.999999E+	995/65	