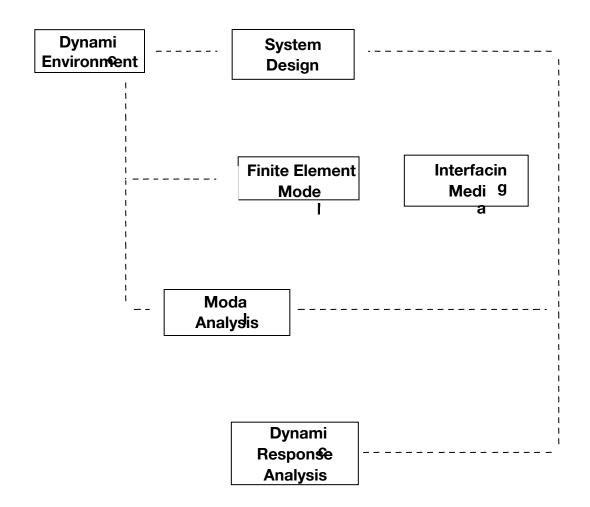
Раздел 1

Обзор основ динамического анализа

Раздел 1. Обзор основ динамического анализа

•	ПРОЦЕСС ДИНАМИЧЕСКОГО АНАЛИЗА	1 - 4	Ļ
•	СИСТЕМА С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ	1 - 5	,
•	СИСТЕМА ЕДИНИЦ	1 - (3
•	НЕЗАТУХАЮЩИЕ СВОБОДНЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ (CC)	1 - 9	}
•	ЗАТУХАЮЩИЕ СВОБОДНЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ	1- 1′	1
•	СВОБОДНЫЕ ЗАТУХАЮЩИЕ КОЛЕБАНИЯ - ПОДКРИТИЧЕСКОЕ ДЕМПФИРОВАНИЕ	. 1 - 13	3
•	СИСТЕМА С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ – НЕЗАТУХАЮЩИЕ СИНУСОИДАЛЬНЫЕ КОЛЕБАНИЯ	1 - 14	ļ.
•	ДИНАМИЧЕСКИЙ ФАКТОР	1 - 16	;
•	СИСТЕМА С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ – ЗАТУХАЮЩИЕ СИНУСОИДАЛЬНЫЕ КОЛЕБАНИЯ	. 1 - 17	7
	ДИНАМИЧЕСКИЙ ФАКТОР		



Обзор основ динамического анализа (продолж.)

•	СИСТЕМА С МНОГИМИ СТЕПЕНЯМИ СВОБОДЫ	1 - 20
•	ТИПЫ КОЛЕБАНИЙ	1 - 21
•	ВИДЫ ДИНАМИЧЕСКОГО ВОЗДЕЙСТВИЯ	. 1 - 22
•	ВОПРОСЫ МОДЕЛИРОВАНИЯ ДИНАМИКИ МЕТОДОМ КЭ	. 1 - 23
•	ДОКУМЕНТАЦИЯ ПО СИСТЕМЕ MSC.Nastran	1 - 24
•	ЛИТЕРАТУРА ПО ДИНАМИЧЕСКОМУ АНАЛИЗУ	1 - 26

Процесс динамического анализа

Система с одной степенью свободы

• Уравнение движения:

$$m\ddot{u}(t) + b\dot{u}(t) + ku(t) = p(t) + n(u,u)$$

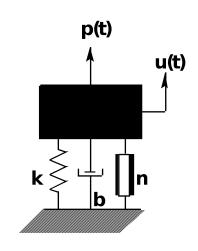
т = масса

b = демпфирование

k = жесткость

n = нелинейная восстанавливающая сила

р = внешняя сила


и = перемещение

 \dot{u} = скорость

и = ускорение

NAS102

u, u, u и р зависят от времени. m, b и k - константы. n – нелинейная функция u, u.

Система единиц

• Основные единицы

- –Длина L (дюйм, метр)
- -Macca M (слаг, килограмм)
- -Время Т (секунда)

- -Длина L (метр, миллиметр)
- -Сила F (Ньютон)
- Время Т (секунда)

• Основные и производные единицы

- -m M
- -b MT ⁻¹
- -k MT ⁻²
- **-**p MLT ⁻²
- –u L
- -u · LT -1
- -u" LT -2

- -m $FT^2/L = F/(LT^{-2})$
- -b FT/L = F/(T/L)
- -k F/L
- -p F
- –u L
- -u LT -1
- -u" LT -2

$$1\frac{Ns^2}{mm} = 1000kg = 1t$$

Система единиц

• Техническая система единиц.

Variable	Dimensions*	Common English Units	Common Metric Units
I	lı.		1
Length	L	in 20	m
Mass	M	lb-sec ² /in	kg
Time	T L	sec	sec
Area	L2	in ²	$m_{\frac{3}{3}}^2$
Volume	L3	in ³	m ³
Velocity	LT ⁻¹	in/sec	m/sec
Acceleration	LT ⁻²	in/sec ²	m/sec ²
Rotation	-	rad	rad
Rotational Velocity	T -1	rad/sec	rad/sec
Rotational Acceleration	T -2	rad/sec ²	rad/sec ²
Circular Frequency	T -1	rad/sec	rad/sec
Frequency	T -1	cps; Hz	cps; Hz
Eigenvalue	T -2	rad ² /sec ²	rad ² /sec ²
Phase Angle	-	deg	deg
Force	MLT ⁻²	lb	N
Weight	MLT ⁻²	lb	N
Moment	ML2T -2	in-lb	N-m
Mass Density	ML ⁻³	lb-sec ² /in ⁴	kg/m ³
Young's Modulus	ML ⁻¹ T ⁻²	lb/in ²	Pa; N/m²
Poisson's Ratio	-	-	-
Shear Modulus	ML ⁻¹ T ⁻²	lb/in ²	Pa; N/m²
Area Moment of Inertia	L ⁴	in ⁴	m ⁴
Torsional Constant	L ⁴	in ⁴	m ⁴
Mass Moment of Inertia	ML ²	in-lb-sec ²	kg-m ²
Stiffness	MT ⁻²	lb/in	N/m
Viscous Damping Coefficient	MT ⁻¹	lb-sec/in	N-sec/m
Area Moment of Inertia	ML ⁻¹ T ⁻²	lb/in ²	Pa; N/m²
Torsional Constant	-	-	-

*L размерность длины
М размерность массы
Т размерность времени
- безразмерная величина

MSC MECHANICAL SOLUTIONS

A Division of MSC. Software

Система единиц

- Используйте согласованную систему единиц!
- Ошибки в выборе системы единиц причина №1 при подготовке модели для динамического анализа!
- Наиболее частые ошибки при выборе единиц для параметров массы и демпфирования.
- В MSC.Nastran нет "встроенной" системы единиц. Пользователь сам должен проверять согласованность единиц измерения величин.
- Согласованные единицы: Н, тм, мм, с или Н, кг, м, с

Незатухающие свободные колебания системы с одной СС

• Уравнение колебаний

$$m\ddot{u}(t) + ku(t) = 0$$

• Общее решение

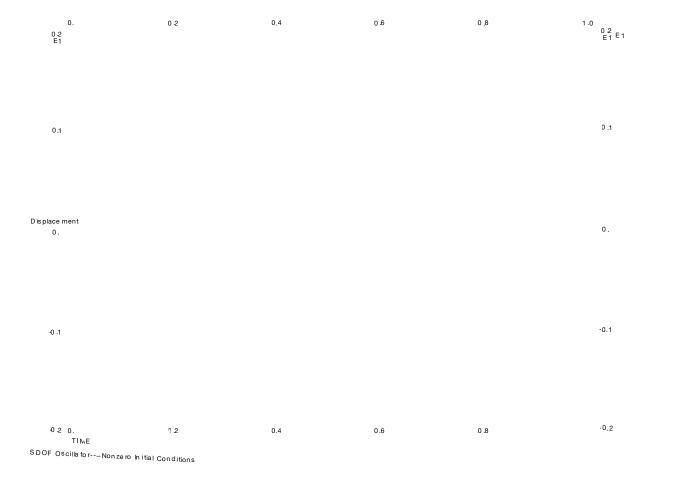
$$u(t) = A sin\omega_n t + B cos\omega_n t$$

$$\omega_n = \sqrt{\frac{k}{m}} = natura \text{frequency} \text{rad/sec})$$

$$f_n = \frac{\omega_n}{2\pi} = \text{natural requency cycles/sec}$$

Начальные условия

$$\boldsymbol{B}=\boldsymbol{u(t=0)}$$


$$u(t) = \frac{\dot{u}(0)}{\omega_n} \sin \omega_n t + u(0) \cos \omega_n t$$

NAS102

Декабрь 2001, Стр. 1-9 **MSC Moscow**

Незатухающие свободные колебания системы с одной СС

Затухающие свободные колебания системы с одной СС

• Уравнение колебаний

$$m\ddot{u}(t) + b\dot{u}(t) + Ku(t) = 0$$

• Критическое демпфирование

$$b_c = 2\sqrt{km} = 2m\omega_n$$

• Коэффициент апериодичности

$$\zeta = \frac{b}{b}$$

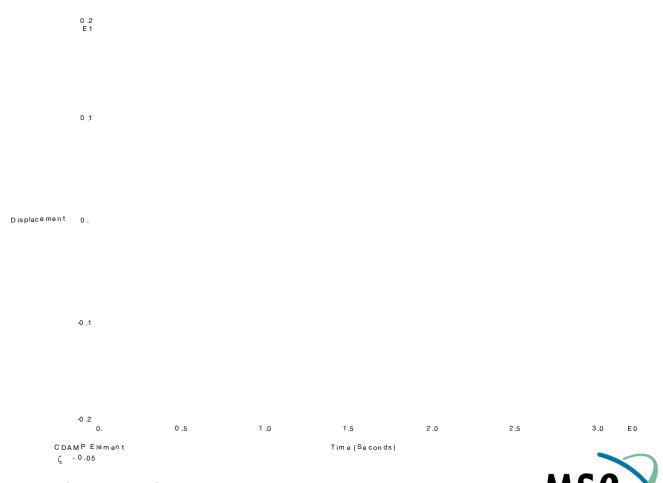
- Влияние величины демпфирования на тип решения.
 - Подкритическое демпфирование

$$\mathbf{b} < \mathbf{b}^{\mathsf{c}}$$

$$\textbf{u(t)} = \textbf{e}^{-\textbf{bt/2m}} (\textbf{A} \, \textbf{sin} \boldsymbol{\omega}_{\textbf{d}} \textbf{t} + \textbf{B} \, \textbf{cos} \boldsymbol{\omega}_{\textbf{d}} \textbf{t})$$

- Частота колебаний системы с демпфированием

$$\boldsymbol{\omega}_{_{\boldsymbol{d}}} = \boldsymbol{\omega}_{_{\boldsymbol{D}}} \sqrt{\boldsymbol{1} \! \! - \boldsymbol{\zeta}^{_{\boldsymbol{2}}}}$$



Затухающие свободные колебания системы с одной СС

- Критическое демпфирование
 - $\mathbf{b} = \mathbf{b}_{c}$
- Колебания отсутствуют.
 - $u(t) = (A + Bt) e^{-bt/2m}$
- Надкритическое демпфирование
 - **b** > **b**_c
 - Колебания отсутствуют. Система постепенно возвращается в положение равновесия.
- Обычно исследуются колебания с подкритическим демпфированием.
- Для конструкций характерно вязкое демпфирование в диапазоне 0 – 0,1.

Свободные затухающие колебания – подкритическое демпфирование

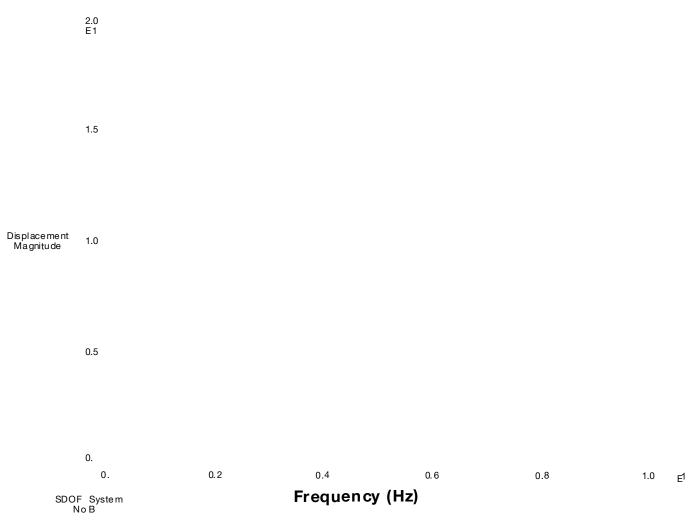
MSC

Система с одной СС – незатухающие синусоидальные колебания

Уравнение колебаний

B = u(t = 0)

$$A = \frac{\dot{u}(t = 0)}{\omega_{n}} - \frac{\omega P/k}{(1 - \omega^{2}/\omega_{n}^{2})\omega_{n}}$$



Система с одной СС – незатухающие синусоидальные колебания

- Установившиеся колебания
 - P/k статическая деформация (перемещение).
 - $\frac{1}{1-\omega^2/\omega_n^2}$ динамический фактор.

Динамический фактор

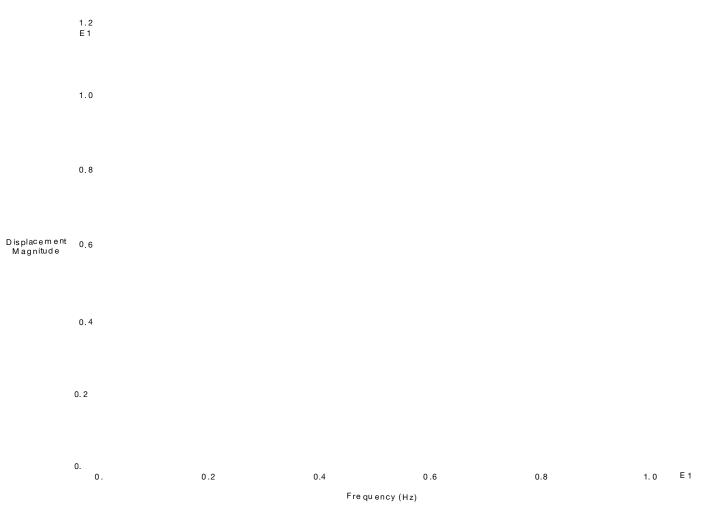
Система с одной СС – затухающие синусоидальные колебания

- Уравнение колебаний
 - mü(t) + bu(t) + ku(t) = P sin ωt
- Переходный процесс быстро затухает и не представляет интереса.
- Установившиеся колебания

$$u(t) = P/k \frac{\sin(\omega t + \theta)}{\sqrt{(1 - \omega^2/\omega_n^2)^2 + (2\zeta\omega/\omega_n)^2}}$$

$$\theta = -\tan^{-1}\frac{2\zeta\omega/\omega_n}{1-\omega^2/\omega_n^2}$$

θ – сдвиг (запаздывание) фазы



Система с одной СС – затухающие синусоидальные колебания

- Для $\frac{\omega}{\omega} \ll 1$
 - Динамический фактор 🔀 (статическое решение)
 - Фазовый угол → 360° (отклик синфазен возмущению)
- Для [∞]/₃ >> 1
 - Динамический фактор 🔔 0 (отклик ноль)
 - Фазовый угол 🗻 180° (отклик противофазен возмущению)
- Для <u>ω</u> ≈ 1
 - ≈ 1 Динамический фактор ≈ 1 2700 ≈ 25
 - Фазовый угол ≈ 270°

Динамический фактор

Система с многими степенями свободы

• Уравнение колебаний преобразуется к виду

[M]
$$\{\ddot{u}\}+[B]\{\dot{u}\}+[K]\{u\}=\{P\}+\{N\}$$

- где
- {u} = вектор перемещений
- {М}= матрица масс
- {В}= матрица демпфирования
- {К}= матрица жесткости
- {Р}= вектор внешнего воздействия
- {N}= вектор нелинейных сил

Типы колебаний

Deterministic

Periodic

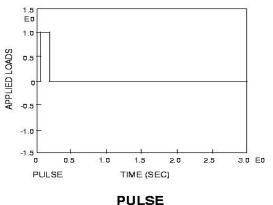
Transient

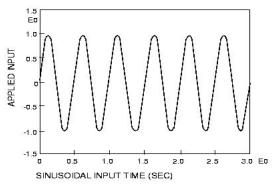
Simple Harmonic

Shoc **S**pectr

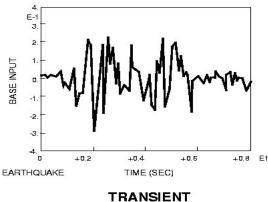
а

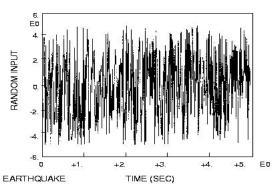
Rando


Stationary


Nonstationary

Ergodic




Виды динамического воздействия

E SINUSOIDAL

RANDOM

NAS102 Декабрь 2001, Стр. 1-22 MSC Moscow

Вопросы моделирования динамики методом КЭ

- Частотный диапазон
- Узлы/закрепления/элементы
- Линейное и нелинейное решение
- "Полная" модель и модель с суперэлементами
- Взаимодействие с внешней средой
- Сравнительный/совместный анализ расчетных и экспериментальных результатов
- Демпфирование

Документация по системе MSC.Nastran

Документация

- MSC.Nastran Quick Reference Guide
- MSC.Nastran Reference Manual

Руководства пользователя

- Getting Started with MSC.Nastran
- MSC.Nastran Linear Static Analysis
- MSC.Nastran Basic Dynamic Analysis
- MSC.Nastran Advanced Dynamic Analysis
- MSC.Nastran Design Sensitivity and Optimization
- MSC.Nastran DMAP Module Dictionary
- MSC.Nastran Numerical Methods
- MSC.Nastran Aeroelastic Analysis
- MSC.Nastran Thermal Analysis

Документация по системе MSC.Nastran

- Другая документация
 - MSC.Nastran Common Questions and Answers
 - MSC.Nastran Bibliography
- Документация в электронной форме (для рабочих станций и персональных компьютеров)

Литература по динамическому анализу

- W. C. Hurty and M. F. Rubinstein, *Dynamics of Structures*, Prentice-Hall, 1964.
- R. W. Clough and J. Penzien, *Dynamics of Structures*, McGraw-Hill, 1975.
- S. Timoshenko, D. H. Young, and W. Weaver, Jr., *Vibration Problems in Engineering*, 4th Ed., John Wiley & Sons, 1974.
- K. J. Bathe and E. L. Wilson, *Numerical Methods in Finite Element Analysis*, Prentice-Hall, 1976.
- J. S. Przemieniecki, Theory of Matrix Structural Analysis, McGraw-Hill, 1968.
- C. M. Harris and C. E. Crede, *Shock and Vibration Handbook*, 2nd Ed., McGraw-Hill, 1976.
- L. Meirovitch, Analytical Methods in Vibrations, MacMillan, 1967.
- L. Meirovitch, *Elements of Vibration Analysis*, McGraw-Hill, 1975.
- M. Paz, Structural Dynamics Theory and Computation, Prentice-Hall, 1981.

Литература по динамическому анализу

- W. T. Thomson, Theory of Vibrations with Applications, Prentice-Hall, 1981.
- R. R. Craig, Structural Dynamics: An Introduction to Computer Methods, John Wiley & Sons, 1981.
- S. H. Crandall and W. D. Mark, Random Vibration in Mechanical Systems, Academic Press, 1963.
- J. S. Bendat and A. G. Piersol, Random Data Analysis and Measurement Techniques, 2nd Ed., John Wiley & Sons, 1986.

