Раздел 11

Метод остаточных векторов

Раздел 11. Метод остаточных векторов

ИДЕЯ МОДАЛЬНОГО ПОДХОДА	11 - 3
• СПОСОБЫ КОМПЕНСАЦИИ ОТСУТСТВИЯ МОД	11 - 5
• ОСТАТОЧНЫЙ ВЕКТОР	11 - 6
• ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ МЕТОДА ОСТАТОЧНЫХ	
BEKTPOB	11 - 8
• ПРИМЕР	11 - 10
• ВХОДНОЙ ФАЙЛ ДЛЯ ПРИМЕРА ИСПОЛЬЗОВАНИЯ	
• МЕТОДА ОСТАТОЧНЫХ ВЕКТОРОВ	11 - 11
• СРАВНИТЕЛЬНЫЙ АНАЛИЗ РЕЗУЛЬТАТОВ	11 - 12
• ОБШИЕ РЕКОМЕНДАЦИИ	11 - 14

Идея модального подхода

Предположим, что отклик может быть представлен линейной комбинацией вычисленных мод

$$\{ U \} = [\phi] \{ \xi \}$$

- Количество возможных мод = количество степеней свободы с соответствующими массами
- Если сохранены все моды, то результат будет аналогичный получаемому прямым методом
 - В практике не используется
 - Отсутствует сам смысл модального подхода

Идея модального подхода

• { U } = [
$$\phi$$
] { ξ } = [ϕ] $_r$ { ξ } $_r$ + [ϕ] $_h$ { ξ } $_n$ где [ϕ] $_r$ - количество сохраненных мод [ϕ] $_n$ – не сохраненные моды

- [φ]_r обычно составляет малую часть от [φ]
- Точность модального решения зависит от того, как хорошо с помощью линейной комбинации [φ], может быть представлено истинное решение под действием приложенных нагрузок.

Способы компенсации отсутствия МОД

- Имеются два метода компенсации отсутствующих мод
 - Метод остаточных векторов (рекомендуемый метод)
 - Метод модального ускорения (см. Приложение F)

MSC Moscow

Остаточный вектор

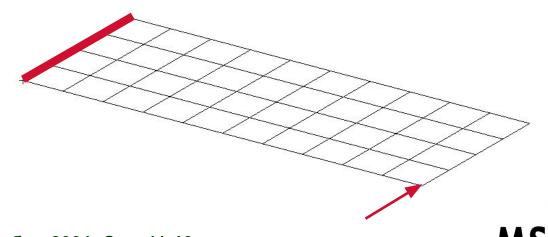
- Добавим к модам векторы деформации, определенные статическим расчетом действия статической нагрузки
- Отклик отбрасываемых мод близок к статическому, если частоты этих мод высоки по сравнению с частотой воздействия
 - При (ω/ω_n) << 1, динамический фактор 1 (см. Раздел 1)
 - При соблюдении этого условия точность аппроксимации получается превосходной
- Повышение точности модального решения во всех случаях
- Рекомендуется применять во всех случаях использования модального подхода (не предусмотрено, однако, по умолчанию)

Остаточный вектор

- Применим при суперэлементном анализе
- Выводятся две таблицы результатов модального анализа
 - Оригинальная таблица
 - Дополнительная таблица, содержащая также дополнительные собственные значения (в конце таблицы) по одному на добавленные остаточные векторы.
- Выполняется повторный анализ ортогональности, чтобы убедиться, что линейно-зависимые векторы удалены.

Интерфейс пользователя метода остаточных векторов

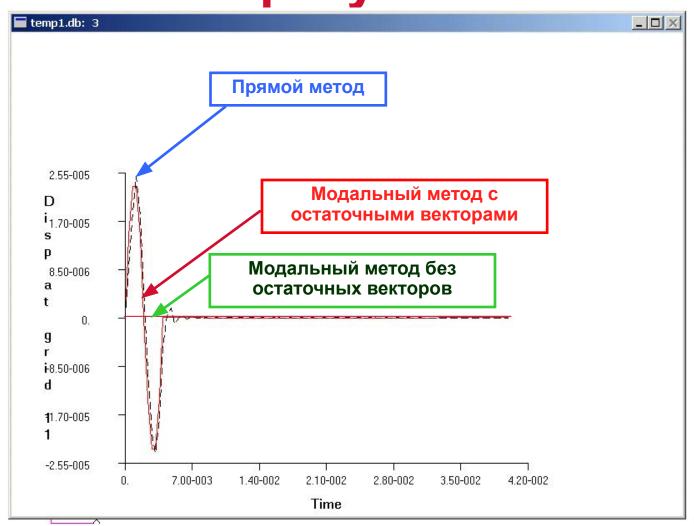
- Три способа определения остаточных векторов:
 - Форма деформации определяется под действием статических нагрузок (например, DAREA, FORCE, PLOAD4, LOADSET/LSEQ и т.д.)
 - Статическая форма деформации определяется под действием инерционных нагрузок (PARAM, RESVINER, YES или PARAM, INRLM, -1)
 - Задание с помощью операторов USET,U6,GID,С или USET1,U6,C,GID1,GID2,...
 - К каждой степени свободы, указанной в операторе USETi, U6 прикладывается единичная сила в заданном направлении, в результате генерируется статическая форма


Интерфейс пользователя метода остаточных векторов

- Инициирование применения метода производится оператором PARAM, RESVEC, YES
- Оператор PARAM, RESVINER, YES или PARAM, INRLM, -1 добавляет дополнительные статические формы, возникающие под действием инерционных нагрузок.
- Для незакрепленных конструкций необходимо использовать оператор SUPORT

Пример

- Приложить к узлу 11 модели пластины в направлении
 Ү синусоидальную нагрузку частотой 250 Гц и
 длительностью в один период. Вычислить оклик в
 узле 11, используя следующие методы.
 - 1. Модальный метод, сохранить 4 моды, принять модальное демпфирование 0,03
 - 2. Модальный метод (повторить шаг 1), включив остаточный вектор
 - 3. Прямой метод, приняв G=0,06


Входной файл для примера использования метода остаточных векторов

```
resvec2.dat
                                                                             BEGIN BULK
                                                                             PARAM, COUPMASS, 1
SOL 112
CEND
                                                                             param, post, 0
TITLE = TRANSIENT RESPONSE WITH POINT LOAD IN THE Y-DIRECTION
                                                                             param, resvec, yes
SUBTITLE = MODAL APPROACH - REQUESTING 4 MODES - plus RESIDUAL VECTOR
ECHO = UNSORTED
SPC = 1
SET 111 = 11, 33, 55
                                                                             INCLUDE 'plate.bdf'
DISPLACEMENT (SORT2) = 111
SDAMPING = 100
SUBCASE 1
METHOD = 100
                                                                             EIGRL, 100, , ,4
DLOAD = 500
TSTEP = 100
OUTPUT (XYPLOT)
XGRID=YES
YGRID=YES
XTITLE= TIME (SEC)
YTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER
XYPLOT DISP RESPONSE / 11 (T2)
YTITLE= DISPLACEMENT RESPONSE AT TIP CENTER
XYPLOT DISP RESPONSE / 33 (T2)
YTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER
XYPLOT DISP RESPONSE / 55 (T2)
```

```
PARAM, WTMASS, 0.00259
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE PROBLEM
S EIGENVALUE EXTRACTION PARAMETERS
S SPECIFY MODAL DAMPING
TABDMP1, 100, CRIT,
+, 0., .03, 10., .03, ENDT
$ APPLY POINT LOAD (250 HZ)
TLOAD2, 500, 600,, 0, 0.0, 4.E-3, 250., -90.
DAREA, 600, 11, 2, 1.
TSTEP, 100, 100, 4.0E-4, 1
ENDDATA
```


Сравнительный анализ результатов

Сравнительный анализ результатов

- Первые 4 моды моды изгиба и кручения с выходом пластины из плоскости
- Линейной комбинацией этих 4 мод невозможно представить перемещение пластины под действием нагрузки, действующей в плоскости
- Модальный метод, учитывающий первые 4 моды, без остаточных векторов дает неудовлетворительные результаты
- Модальный метод, учитывающий первые 4 моды и остаточный вектор дает благоприятный результат.
- Заметим, что при модальном методе используется модальной демпфирование, а при прямом – конструкционное, что приводит к некоторой разнице в результатах.

Общие рекомендации

- Всегда включайте остаточный вектор в модальное решение (param,resvec,yes)
- Включайте остаточный вектор по действием инерционных нагрузок (param,resviner,yes) для закрепленных конструкций
- Используйте остаточные векторы в качестве дополнительных (не заменяющих) к модальным векторам.

