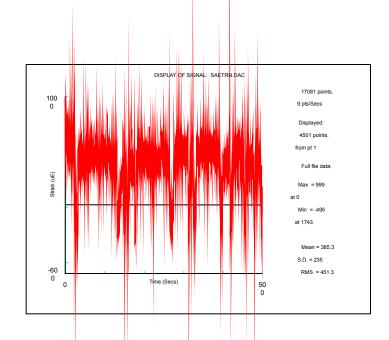
РАЗДЕЛ 21

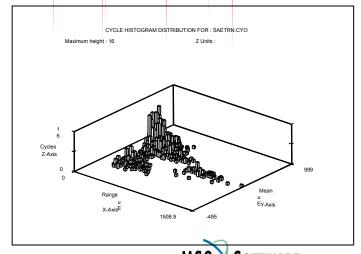
ПРОГРАММНЫЙ ДАТЧИК ДЕФОРМАЦИЙ В MSC.FATIGUE

ИНСТРУМЕНТ ДЛЯ ПРОВЕДЕНИЯ ВИРТУАЛЬНОГО TECTA В СРЕДЕ MSC.Fatigue

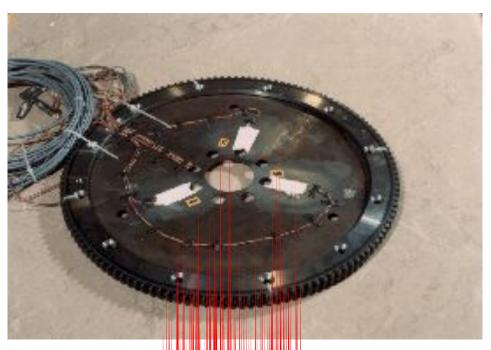
ПРОГРАММНЫЙ ДАЧТИК ДЕФОРМАЦИЙ

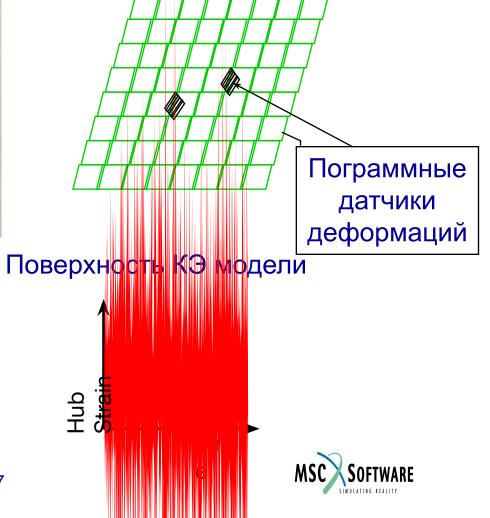
- Конечно-элементный инструмент, позволяющий создать историю изменения напряжений и деформаций по времени в произвольном месте на поверхности конечно-элементной модели
- Используется:
 - Для корреляции результатов конечно-элементной модели с тестом
 - Для прогнозирования мест установки датчиков при проведении испытаний
- Все существовавшие до этого методы позволяли сравнивать только по одному значению напряжений или деформаций


ОПИСАНИЕ


- Виртуальный датчик деформаций наклеиваемый на КЭ модель. Этот датчик может генерировать теоретическую историю изменения деформаций в заданнойм месте на модели, которая при этом нагружена более чем одной нагрузкой.
- Получить данные можно размещая датчик в любом месте на поверхности КЭ сетки
- При этом можно использовать как стандартный набор датчиков, так и датчики, определенные пользователем.
- Датчик работает с результатами полученными в результате статического расчета, анализа переходного процесса или квазистатического КЭ анализа.

КОРРЕЛИРОВАНИЕ


- Возможна корреляция теоритческих расчетов с данными натурных испытаний
- Возможно улучшить модель и повысить ее достоверность.
- Зависимость напряжения/деформации по времени может быть последовательно обработана для:
 - Подсчета циклов
 - Вычисления спектральной плотности
 - Получения значений повреждаемость/долговечность



КОРРЕЛИРОВАНИЕ

S21-7

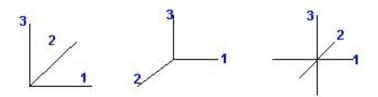
PAT318, Section 21, Mana 200:

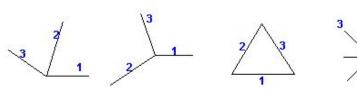
АНАЛИЗ СВАРНЫХ СОЕДИНЕНИЙ

- Программный датчик деформаций будет полезен также для специалиста занимающегося оценкой долговечности сварных соединений средствами MSC. Fatigue в соответствии с британским стандартом 7608.
- При прогнозировании долговечности сварных конструкций очень важное значение имеет напрвление осей датчика.
- Датчик деофрмаций позволяет получать временные зависимости измеряемых величин в определенных направлениях.

АНАЛИЗ СВАРНЫХ СОЕДИНЕНИЙ

Датчик позволяет получить историю изменения деформаций по врмени в сварном шве, обеспечивая таким образом важной информацией расчетчика.


Сварное соединение класса F (BS7608)



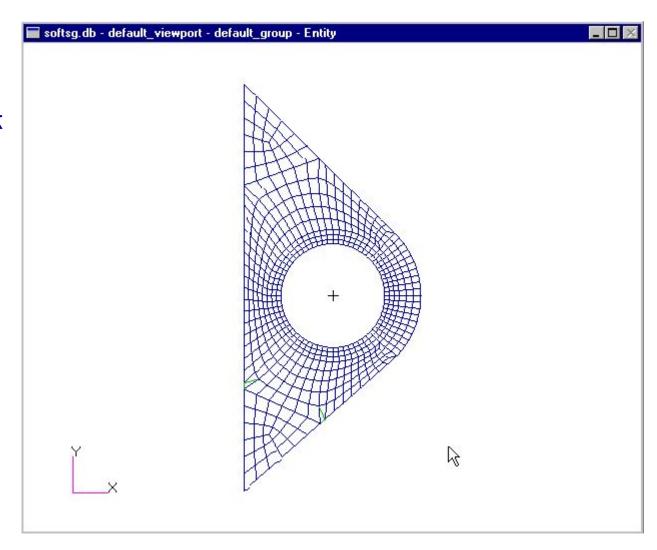
ОПИСАНИЕ ДАТЧИКА

• Датчики задаются как группы элементов. Каждый датчик имеет от 1 до 3 элементов.

- Стандартно определенные датчики:
 - одноосные
 - Т-образные
 - Дельта-образные
 - Прямоугольные
 - Плоские и стэковые.

- Пользователь может также определить свои датчики
 - Определение нового датчика осуществляется в файле C:\MSC\MSC.Patran2004\mscfatigue_files/gauges.def
 - В этом файле содержатся описания всех датчиков.

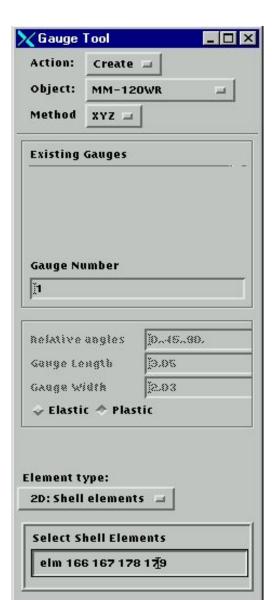
РЕАЛИЗАЦИЯ


- Позиция датчика:
 - В любом месте на поверхности КЭ модели
 - Ориентация любая
 - Покрывает несколько элементов сразу
- Результаты датчика:
 - Осредненные результаты по элементам под датчиком
 - Результаты преобразуются к системе координат датчика.
- Возможность задания до 200 различного типа датчиков

ПРИМЕР: ПРОГРАММНЫЙ ДАТЧИК ДЕФОРМАЦИЙ

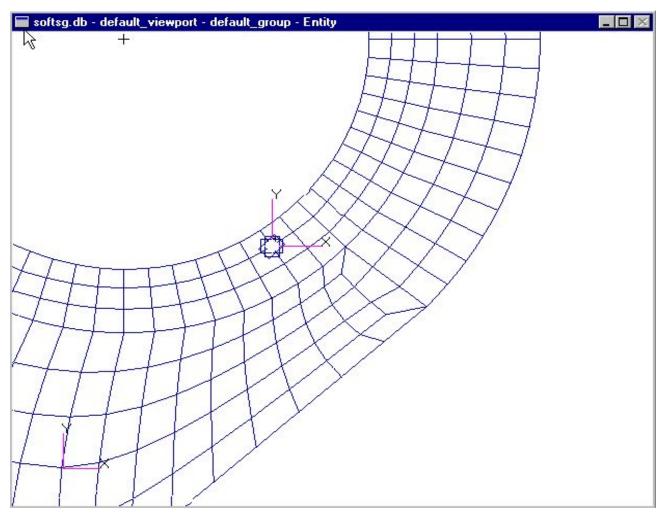
Используем проргаммный датчик деформаций в качестве инструмента корреляции проушины


Нагружение определяется несколькими нагрузками



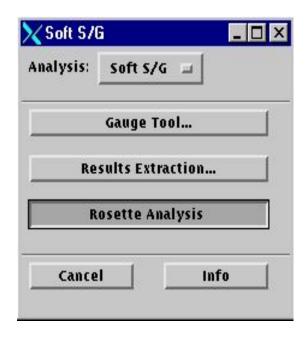
УСТАНОВКА ДАТЧИКА

Задайте узел для помещения внего начала координат датчика ...



И элементы, определяющие плоскость

ИНФОРМАЦИЯ О НАГРУЖЕНИИ



ПРОВЕДЕНИЕ АНАЛИЗА

- Задайте свойства материала и нагрузки
- Получите временные зависимости по показаниям розетки датчиков
- Проведите Perform rosette analysis and correlation

КОРРЕЛИРОВАНИЕ

- Пересечения областей и кросс-графики
- Rosette analysis
- Одноосный счетчик долговечности
- Многоосный счетчик долговечности

УПРАЖНЕНИЕ

- Выполните упражнение из главы 14 книги Quick Start Guide "A Software Strain Gauge"
- Еслти что-либо не понятно не стесняйтесь спрашивать.

