ТЕМА 5. ОСОБЕННОСТИ ОРГАНИЗАЦИИ ДАННЫХ В ГИС

- К особенностям ГИС следует отнести наличие больших объемов хранимой в них информации. Кроме того, они отличаются специфичностью организации и структурирования моделей данных.
- ГИС характеризуются разнообразием графических данных со специфическими их частями и связями. В частности, карта может быть рассмотрена как двумерная аналоговая модель, отображающая трехмерную поверхность.
- Используя процедуру абстракции, определим более общую модель геоинформационных данных как абстракцию данных, которые содержатся на земной поверхности. Такой подход требует выполнение основных типов данных и их многочисленных связей.

- □ Данные реального мира, отображаемые в ГИС, можно рассматривать с учетом трех аспектов: пространственного, временного и тематического.
- □ Пространственный аспект связан с определением местоположения, временной с изменениями объекта или процесса с течением времени, в частности, от одного временного среза до другого. Примером временных данных служат результаты переписи населения. Тематический аспект обусловлен выделением одних признаков объекта и исключением из рассмотрения других.
- Все измеримые параметры моделей геоинформационных данных подпадают под одну из этих характеристик: место, время, предмет. Затруднительно исчерпывающим образом описать сразу все три эти характеристики.

- Поэтому при построении моделей данных на основе наблюдений явлений реального мира один параметр считают «неизменным», изменения другого «задаются» и при этом «изменяют» изменения третьего параметра.
- Зафиксировав географическое положение и изменяя время, можно получить временные ряды данных.
 Зафиксировав время и изменяя географическое положение, получаем данные по профилям.
- В большинстве технологий ГИС для определения параметров используют один класс данных − координаты, для определения параметров времени и тематической направленности − другой класс данных − атрибуты.

5.1. Координатные данные

□ Геометрически информация, содержащаяся на карте, может быть определена как совокупность наборов точек, линий, контуров и площадей, имеющих метрические значения, отображающие трехмерную реальность. Эта информация образует класс координатных данных ГИС, являющихся обязательной характеристикой геообъектов. Будучи частью (классом) общей модели данных в ГИС, координатные данные определяют класс координатных моделей.

- Разделяют три типа пространственных объектов: точечные, линейные объекты и ареалы.
- □ Особенность точечных объектов состоит в том, что они хранятся и в виде графических файлов, как другие пространственные объекты, и в виде таблиц, как атрибуты. Последнее обусловлено тем, что координаты каждой точки описывают как два дополнительных атрибута. В силу этого информацию о наборе точек можно представить в виде развернутой таблицы или таблицы, содержащей помимо координат наборы атрибутов (идентификационные номера, тематические характеристики и т.д.). В таких таблицах каждая строка соответствует точке – в ней собрана вся информация о данной точке. Каждый столбец – это признак, содержащий типизированные данные: координаты или атрибуты. Каждая точка независимо от всех остальных точек, представленных отдельными строками.

- Пинейные объекты широко применяются для описания сетей, для которых в отличие от точечных объектов характерно присутствие топологических признаков.
- □ Любая сеть состоит из узлов (вершин) соединений, концов обособленных линий и звеньев (дуг) – цепей в модели базы данных.
- □ Для каждого узла существует специальная характеристика, называемая валентностью, определяемая количеством звеньев в нем.
- □ Линейные объекты, как и точечные, имеют свои атрибуты, причем разные для дуг (звеньев) и узлов. Некоторые атрибуты (например, название пересекающихся улиц) служат для связи одного типа объектов с другими (узлы со звеньями), другие характеризуют только участки звеньев сети.

- Ареалы. В настоящее время в ГИС может быть представлено несколько типов ареалов: зоны в приложении к окружающей среде или природным ресурсам, социально-экономические зоны, данные об угодьях и др.
- Для ареальных объектов границы могут определяться свойством или явлением, а также независимо от явления (затем перечисляются значения атрибутов).
 Кроме того, границы могут устанавливаться искусственно, например, для микрорайонов.

5.2. Атрибутивное описание

Одних координатных данных недостаточно для картографической или сложной графической информации. Картографические объекты, кроме метрической, обладают некоторой присвоенной им описательной информацией. Характеристики объектов, входящие в состав этой информации, называют *атрибутами*. Атрибутами могут быть символы (названия), числа (статистическая информация, код объекта) или графические признаки (цвет, рисунок, заполнения контуров). Совокупность возможных атрибутов определяет класс атрибутивных моделей ГИС.

- Применение атрибутов позволяет осуществлять анализ объектов базы данных с использованием стандартных форм запросов и разного рода фильтров, а также выражений математической логики. Последнее эффективно при тематическом картографировании.
- Кроме того, с помощью атрибутов можно типизировать данные и упорядочивать описание для широкого набора некоординатных данных.
- □ Таким образом, атрибутивное описание дополняет координатное, совместно с ним создает полное описание моделей ГИС и решает задачи типизации исходных данных, что упрощает процессы классификации и обработки.

5.3. Векторные и растровые модели

- Основой визуального представления данных при помощи ГИС-технологий служит так называемая графическая среда. Основу графической среды и, соответственно, визуализации базы данных ГИС составляют векторные (топологические, нетопологические) и растровые модели.
- Все эти модели взаимно преобразуемы. Тем не менее при получении каждой из них необходимо учитывать их особенности.
- Векторные модели данных строятся на векторах, занимающих часть пространства в отличии от занимающих все пространства растровых моделей. Это определяет их основное преимущество требование на порядки меньшей памяти для хранения и меньших затрат времени на обработку и представление.

- При построении векторных моделей объекты создаются путем соединения точек прямыми линиями, дугами окружностей, полилиниями. Площадные объекты ареалы задаются наборами линий.
- Векторные модели с помощью дискретных наборов данных отображают непрерывные объекты или явления, организовывая пространство в любой последовательности, что дает «произвольный доступ» к данным. При этом, векторные данные могут кодироваться с любой мыслимой степенью точности, которая ограничивается лишь возможностями метода внутреннего представления координат.
- Векторные модели используются преимущественно в транспортных, коммунальных, маркетинговых приложениях ГИС. Системы ГИС, работающие в основном с векторными моделями, получили название векторных ГИС.

- Большое количество графических данных в ГИС со специфическими взаимными связями требует топологического описания объектов и групп объектов, которое зависит от «связанности» (простой или сложной). Оно определяет совокупность топологических моделей.
- Напомним, что топологические свойства фигур не изменяются при любых деформациях, производимых без разрывов или соединений.
- В ГИС топологическая модель определяется наличием и хранением совокупностей взаимосвязей, таких как соединенность дуг на пересечениях, упорядоченный набор звеньев (цепей), образующих границу каждого полигона, взаимосвязи смежности между ареалами и т. п.

- В общем смысле слово топологический означает, что в модели объекта хранятся взаимосвязи, которые расширяют использование данных ГИС для различных видов пространственного анализа.
- □ Топологическое векторное представление данных отличается от нетопологического наличием возможности получения исчерпывающего списка взаимоотношений между связанными геометрическими примитивами без изменения хранимых координат пространственных объектов.
- Попологические характеристики должны вычисляться в ходе количественных преобразований моделей объектов ГИС, а затем храниться в базе данных совместно с координатными данными.

- Напомним, что модель данных представляет собой отображение непрерывных последовательностей реального мира в набор дискретных объектов.
- **растровых моделях** дискретизация осуществляется наиболее простым способом - весь объект отображается в пространственные ячейки, образующие регулярную сеть. При этом каждой ячейке растровой модели соответствует одинаковый размерам, но разный по характеристикам (цвет, плотность) участок поверхности объекта. В ячейки модели содержится одно значение, усредняющее характеристику участка поверхности объекта. В теории обработки изображений эта процедура известна под названием пикселизация.

- □ Если векторная модель дает информацию о том, где расположен тот или иной объект, то растровая информацию о том, что расположено в той или иной территории. Это определяет основное назначение растровых моделей непрерывное отображение поверхности.
- □ В растровых моделях в качестве атомарной модели используют двухмерный элемент пространства пиксель (ячейка). Упорядоченная совокупность атомарных моделей образует растр, который, в свою очередь, является моделью карты или геообъекта.
- Векторные объекты относятся к бинарным или квазибинарным. Растровые позволяют отображать полутона.

5.4. Оверлейные структуры

- Цифровая карта может быть организована как множество слоев (покрытий или карт-подложек).
 Концепция послойного представления графической информации заимствована из системы CAD, однако, в ГИС она получила качественно новое развитие.
- □ Принципиальное отличие состоит в том, что слои в ГИС могут быть как векторными, так и растровыми, причем векторные слои обязательно должны иметь одну из трех характеристик векторных данных, т.е. векторный слой должен быть определен как точечный, линейный или полигонный дополнительно к его тематической направленности.

- □ Другое важное отличие послойного представления геоинформационных векторных данных заключается в том, что они являются объектами, т.е. несут информацию об объектах, а не об отдельных элементах объектов, как в САПР.
- □ Слои в ГИС являются типом цифровых картографических моделей, которые построены на основе объединения (типизации) пространственных объектов (или набора данных), имеющих общие свойства или функциональные признаки.
- □ Совокупность слоев образует интегрированную основу графической части ГИС (рис. 5.1).

Рис. 5.1. Пример слоев интегрированной ГИС