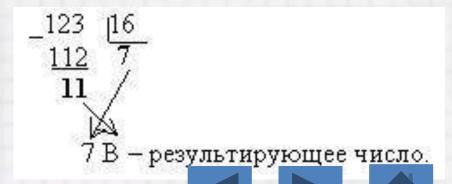




- Полезно помнить, что в двоичной системе:
- четные числа оканчиваются на 0, нечетные на 1;
- числа, которые делятся на 4, оканчиваются на 00, и т.д.; числа, которые делятся на 2_к, оканчиваются на *k* нулей
- если число N принадлежит интервалу 2_{k-1} ≤ N < 2_k, в его двоичной записи будет всего k цифр, например, для числа 125:
- 2₆ = 64 ≤ **125** < 128 = 2₇, 125 = 1111101₂ (7 цифр)


- числа вида 2_к записываются в двоичной системе как единица и *k* нулей, например:
- $16 = 2_4 = 10000_2$
- числа вида 2k-1 записываются в двоичной системе *k* единиц, например:
- 15 = 24-1 = 1111₂
- если известна двоичная запись числа N, то двоичную запись числа 2·N можно легко получить, приписав в конец ноль, например:

- Перевод из десятичной системы счисления в двоичную и шестнадцатеричную:
- а) исходное целое число делится на основание системы счисления, в которую переводится (на 2 при переводе в двоичную систему счисления или на 16 при переводе в шестнадцатеричную); получается частное и остаток;

- б) если полученное частное меньше основания системы счисления, в которую выполняется перевод, процесс деления прекращается, переходят к шагу в). Иначе над частным выполняют действия, описанные в шаге а);
- в) все полученные остатки и последнее частное преобразуются в соответствии с таблицей перевода в цифры той системы счисления, в которую выполняется перевод;

• г) формируется результирующее число: его старший разряд – полученное последнее частное, каждый последующий младший разряд образуется из полученных остатков от деления, начиная с последнего и кончая первым. Таким образом, младший разряд полученного числа – первый остаток от деления, а старший – последнее частное.

Перевод отрицательных чисел

Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-78)?

Решение:

- переводим число 78 в двоичную систему счисления:
- 78 = 64 + 8 + 4 + 2 = 26 + 23 + 22 + 21 = 1001110
- по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
- чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:
- 78 = 01001110,

Перевод отрицательных чисел

Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-78)?

Решение:

- делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):
- $01001110_{2} \rightarrow 10110001_{2}$
- добавляем к результату единицу
- 10110001, + 1 = 10110010,
- это и есть число (-78) в двоичном дополнительно коде
- в записи этого числа 4 единицы
- таким образом, верный ответ 2.

Перевод дробных чисел

Для преобразования десятичных дробей в число любой системы счисления последовательно выполняют умножение на основание системы счисления, пока дробная часть произведения не будет равна нулю.

0, 375 2	\rightarrow	0
0, 750 2	\rightarrow	0
1,50	\rightarrow	1
0,50	\rightarrow	1
1,00		Ви

Полученные целые части числа являются разрядами числа в новой системе, и их необходимо представлять цифрами этой новой системы счисления. Целые части в дальнейшем отбрасываются.

В итоге получаем, что 0, $375_{10} = 0.011_2$

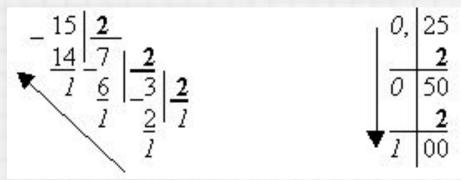
Перевод дробных чисел

Но не каждое число может быть точно выражено в новой системе счисления (т.е. получаем бесконечную дробь), поэтому иногда вычисляют только требуемое количество разрядов дробной

части.

$$125,27_{10} = ?_{7}$$

0	7
1	89 7
6	23 7
1	61 7
4	27 7
1	89 7


0107

Предположим, что нам необходимо оставить 4 знака после запятой, тогда получим 125,2710 = 236,16147

Перевод смешанных чисел

Если число X имеет целую и дробную часть, то переводим целую часть по правилу для целых чисел, а дробную (вместе с нулем и десятичной запятой "0,") по правилу для дробей. Потом к переведенной целой части "приклеиваем" справа переведенную дробную (убрав из нее "0,").

Пример: Перевести число 15, 25₁₀

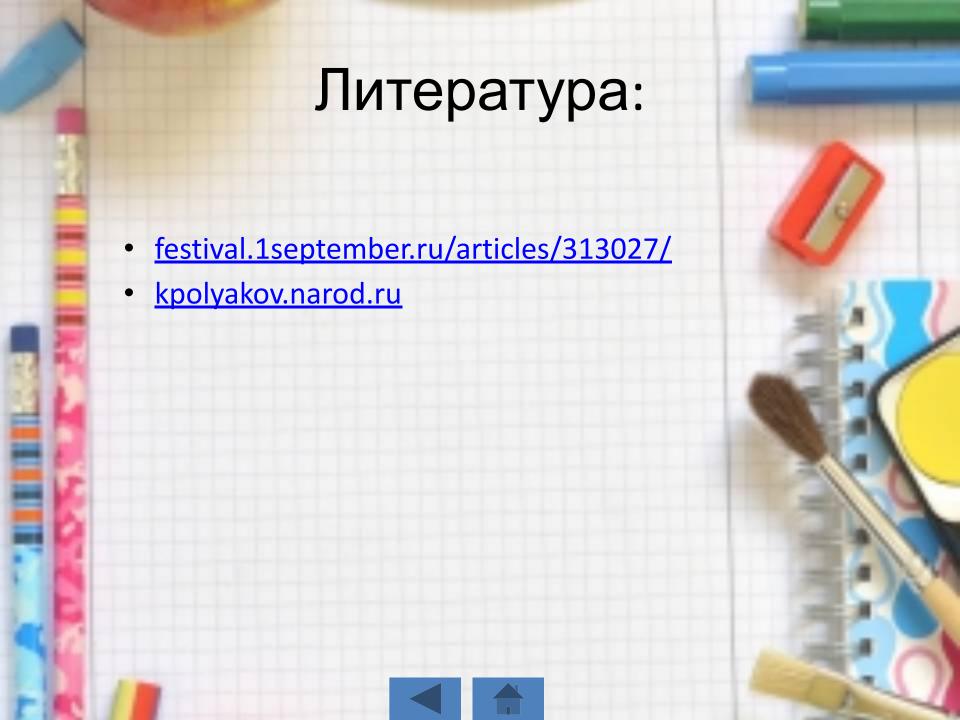
Значит
$$15,25_{10} = 1111,01_2$$

Упражнения

- 1. Перевести число из десятичной системы счисления в двоичную систему счисления а) 12,75; б) 245,71.
- 2. Перевести число из десятичной системы счисления в двоичную систему счисления а) 14,25; б) 210,49.
- 3. Перевести число из десятичной системы счисления в двоичную систему счисления а) 17,5; б) 237,66.
- 4. Перевести число из десятичной системы счисления в двоичную систему счисления а) 18,75; б) 205,78.

Проверить на тренажёре

Упражнения


- 1. Перевести число из десятичной системы счисления в восьмеричную систему счисления а) 20,25; б) 174,54.
- 2. Перевести число из десятичной системы счисления в восьмеричную систему счисления а) 23,5; б) 185,82.
- 3. Перевести число из десятичной системы счисления в восьмеричную систему счисления а) 24,75; б) 252,46.
- 4. Перевести число из десятичной системы счисления в восьмеричную систему счисления а) 27,25; б) 232,39.

Проверить на тренажёре

- 1. Перевести число из десятичной системы счисления в шестнадцатеричную систему счисления а) 28,5; б) 217,72.
- 2. Перевести число из десятичной системы счисления в шестнадцатеричную систему счисления а) 29,75; б) 195,87.
- 3. Перевести число из десятичной системы счисления в шестнадцатеричную систему счисления а) 30,25; б) 226,51.
- 4. Перевести число из десятичной системы счисления в шестнадцатеричную систему счисления а) 33,5; б) 189,37.

Проверить на тренажёре

