
Performance testing

Required technical knowledge

User workflow vs Application
workflow

⚫ User
⚫ Clicks
⚫ Selects
⚫ Checks
⚫ Types
⚫ Uploads
⚫ Downloads
⚫ Navigates

⚫ Application
⚫ Sends request
⚫ Receives response
⚫ Sends request
⚫ Receives response
⚫ Sends request
⚫ Receives sub-response
⚫ Sends sub-request
⚫ Receives sub-response
⚫ Sends sub-request

⚫ Receives response

Performance tests
look like

THI
S

NOT
THIS

Client-server application
architecture

Request

Response

Transacti
on

Request

Response

Async
transaction

sub-response
sub-request
sub-response
sub-request

Request structure

•Protocol/me
thod
•Headers
•Data
•Attachments

Response structure

•Protocol/me
thod
•Headers
•Data
•Attachments

HTTP Protocol
⚫ Methods
⚫ Get – “show me the data that I want”
⚫ Post – “take the data and process it”
⚫ Put – “keep the data please”
⚫ Delete – “delete the data please”
⚫ +5 more

Theoretically | Best Practices | Classic
approach

Each method has its
own role

HTTP Protocol
⚫ Methods
⚫ Get – “show me the data that I want”
⚫ Post – “take the data and process it”
⚫ Put – “keep the data please”
⚫ Delete – “delete the data please”
⚫ +5 more

“Always be
prepared…”

Technically – “Nothing is
impossible”

HTTP Protocol
⚫ Examples where http methods are used properly:

⚫ in public web services
⚫ in projects where coding best practices are strictly

followed

⚫ Examples where http methods can be messed up:
⚫ in http server based web applications
⚫ in projects where best practices aren’t strictly enforced

⚫ “Bad” practices that you can face
⚫ use POST for searches
⚫ use POST to delete something
⚫ never use DELETE, PUT
⚫ etc.

“Always be
prepared…”

HTTP Protocol
⚫ Headers
⚫ format – [header name]:[header value]
⚫ groups
⚫ General Headers – must bet present in ALL

requests
⚫ Request Headers – are present in CLIENT requests

only
⚫ Response Headers – are present in SERVER

responses only
⚫ Entity Headers – details related to content of a

request/response

⚫ some headers belong to few groups

HTTP Protocol
⚫ Headers (examples)

HTTP Protocol
⚫ Message body
⚫ Optional
⚫ Content
⚫ Overall: any text can be sent
⚫ In particular: text that target server understands
⚫ + Entity Headers if/where needed

HTTP Protocol
⚫ Attachments Message body
⚫ Sent in forms
⚫ Key http headers:
⚫ Content-Type: multipart/form-data
⚫ Content-Disposition: form-data
⚫ Content-Type:[text/plan | application/x-object | etc.]

HTTP Protocol
⚫ Message body (example)

HTTP Protocol
⚫ Message body (example)

2
empty
lines

Reque
st

header
s

Messa
ge

body

Delimiter
of form

fields

Content
of a

particular
field

Empty line between headers
and content

Content of a file is sent as
binary code

HTTP Protocol
⚫ Status codes
⚫ 1xx Informational
⚫ Request received, continuing process

⚫ 2xx Success
⚫ Request was received, understood, accepted and

processed successfully

⚫ 3xx Redirection
⚫ Client must take additional action to complete the

request

⚫ 4xx Client Error
⚫ Client seems to have erred

⚫ 5xx Server Error
⚫ The server failed to fulfil an apparently valid

request

HTTP Protocol
⚫ Status codes:
⚫ We knew it!:
⚫ 200 – everything is OK
⚫ 401 – something is wrong with sent credentials
⚫ 404 – requested page is absent
⚫ 500 – server is down

⚫ Do you know more codes?
⚫ 1xx – 3 codes
⚫ 2xx – 10 codes
⚫ 3xx – 10 codes
⚫ 4xx – 43 codes
⚫ 5xx – 16 codes

Regular expressions

Regular expressions

⚫ Regular expressions are quite easy to learn

Regular expressions

⚫ But doing this by slides is as easy…

Regular expressions

⚫ …as learning Chinese

Regular expressions

⚫ You will have to learn it by yourself

Regular expressions
⚫ Theory
⚫ https://en.wikipedia.org/wiki/Regular_expression
⚫ http://www.rexegg.com/

⚫ Interactive online tutorial
⚫ http://regexone.com/

⚫ Online regular expression editors
⚫ http://rubular.com/
⚫ http://www.regexr.com/
⚫ https://regex101.com/#javascript

⚫ Desktop regular expression editor
⚫ http://www.weitz.de/regex-coach/

Regular expressions

⚫ But here is some basic understanding

Regular expressions
⚫ What to search

⚫ Where to search

⚫ How many times it
should appear

⚫ Searching algorithm

Regular expressions
⚫ What to search ⚫ Characters abc123

⚫ use backslash for meta
characters! ^$.?*

⚫ Character classes []
⚫ Groups ()
⚫ Alternatives |

Regular expressions

⚫ Where to search ⚫ Start/End of text ^ and $
⚫ Start/End of a word \b
⚫ After text ?=<
⚫ Before text ?=

Regular expressions

⚫ How many times
it should appear
(quantification)

⚫ Particular number of
times {n}

⚫ Range {m, n}
⚫ Not less then {m,}
⚫ Not more then {,n}
⚫ Zero or one time ?
⚫ Zero or any number of

times *
⚫ One or more times +

Regular expressions

⚫ Searching
algorithm

⚫ Greedy
⚫ repeat a quantifier as

many times as possible
⚫ Lazy
⚫ Repeat a quantifier as

little as possible

Regular expressions

⚫ Greed
y

Example: “stress” testing and “capacity” testing
are not the sameTake anything that

starts from a quote
and ends with a

quote, and it doesn’t
matter what is

between the quotes
/”.*/”

He said
“anything” – I’ll

take
“everything”

“stress” testing and
“capacity”

⚫ Lazy

The shorter the
better

“stress” , “capacity”

/”.*?/”

http://javascript.info/tutorial/gree
dy-and-lazy

Tools that can help
⚫ SoapUI
⚫ Check available functions on an endpoint

(WADL/WSDL)
o List of all functions
o Structure of request/response

⚫ Try your requests before using them in JMeter

⚫ Developer Tools (Chrome browser)
⚫ Compare requests in your tests with requests sent by

application
o Headers
o Content
o Cookies

Tools that can help
⚫ SoapUI http://www.soapui.org
⚫ Chapters recommended for reading/watching
⚫ About SoapUI
⚫ Videos

o Functional Testing
o REST Testing

⚫ Getting started
⚫ Installing SoapUI
⚫ Your First SoapUI Project
⚫ REST Testing

⚫ SOAP and WSDL
⚫ Operations and Requests
⚫ Headers and Attachments

⚫ REST
⚫ Understanding REST Parameters

Tools that can help
⚫ Chrome Developer Tools

https://developer.chrome.com/devtools/do
cs/network
⚫ Network tab is the most important here
⚫ Note! Even if you have been working with

Chrome Developer Tools for ages we strongly
recommend you to read the tool
documentation anyway.

Questio
ns?

