Понятие «информация» и свойства информации

«Информация» - от лат. Informatio означает сведение, разъяснение, ознакомление.

В биологии понятие «информация» связывается с целесообразным поведением живых организмов.

В физике информация рассматривается как антиэнтропия или энтропия с обратным знаком.

В кибернетике понятие «информация» связано с процессами управления в сложных системах, живых организмах или технических устройствах.

С точки зрения процесса познания информация может рассматриваться как знания.

Социально значимые свойства информации:

- -понятность;
- -полезность;
- -достоверность;
- -актуальность
- точность;
- -полнота.

Единицы измерения информации

За единицу количества информации принимается количество информации, которое содержит сообщение, уменьшающее неопределенность в два раза. Такая единица называется «бит», а следующей по величине единицей является байт:

$$1$$
 байт = 2^3 бит = 8 бит

Кратные байту единицы измерения:

 $1 \text{ Кбайт} = 2^{10} \text{ байт} = 1024 \text{ байт};$

 $1 \text{ Мбайт} = 2^{10} \text{ Кбайт} = 1024 \text{ Кбайт};$

 1Γ байт = $2^{10} M$ байт = 1024 Mбайт

Существует формула, связывающая между собой количество возможных событий **N** и количество информации **I**:

$$N=2^{I}$$

Пример: В игре «крестики — нолики» на поле 8х8 перед первым ходом существует 64 возможных события (64 различных варианта расположения «крестика»), тогда уравнение принимает вид: $64 = 2^{I}$.

Так как $64 = 2^6$, то получим $2^6 = 2^I$. Таким образом, I = 6 битов, т.е. количество информации, полученное вторым игроком после первого хода первого игрока, составляет 6 битов.

Задание 2.1

Какое количество информации получит второй игрок после первого хода первого игрока в игре в «Крестики – нолики» на поле размером 4x4?

Алфавитный подход к определению количества информации.

Формула Шеннона.

Количество информации, которое содержит сообщение закодированное с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на количество знаков.

В русском алфавите, если не использовать букву \ddot{E} , количество событий (букв) будет равно 32. Тогда: $32=2^I$, откуда I=5, т.е. каждый символ несет 5 битов информации.

Формулу для вычисления количества информации в случае различных вероятностей событий предложил **К. Шеннон** в 1948 году:

$$I = -\sum_{i=1}^{N} p_i \log_2 p_i$$

где I -количество информации;

N - количество возможных событий;

Рі – вероятность і-го события

Этот подход к определению количества информации называется вероятностным.

Когда события равновероятны (Pi=1/N), величину количества информации I можно рассчитать по формуле:

$$I = -\sum_{i=1}^{N} \frac{1}{N} \log_2 \frac{1}{N} = \log_2 N$$

Количество информации, которое мы получаем, достигает максимального значения, если события равновероятны.

Информационная модель игры «Угадай число»:

Вопрос второго участника	Ответ первого участника	Неопределенность знаний (количество возможных событий)	Полученное количество информации
		16	1 бит
Число больше 8?	Нет	8	1 бит
Число больше 4?	Нет	4	1 бит
Число больше 2?	Да	2	1 бит
Число 3?	Да	1	1 бит