

Лекция 1. Вопросы:

- 1. Основные сведения о компьютерной графике.
- 2. Области применения компьютерной графики.
- 3. Представление графической информации в памяти компьютера. Виды компьютерной графики.
- 4. 3D-графика.
- 5. Создание графических изображений.
- 6. Форматы графических файлов.
- 7. Коллекционирование изображений.
- 8. Презентационная графика.

Основные сведения о компьютерной графике

Компьютерная графика — область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов.

Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 1950-х годов для большинства ЭВМ, применявшихся в научных и военных исследованиях.

Задачи компьютерной графики:

- 1. Представление изображения.
- 2. Подготовка изображения к визуализации.
- 3. Создание изображения.
- 4. Осуществление действий с изображением.

Области применения компьютерной графики

- Деловая (коммерческая)
- Иллюстративная
- Художественная и рекламная графика
- Конструкторская (инженерная)
- Научная
- Компьютерная анимация
- Мультимедиа
- Когнитивная

Деловая графика

Предназначена для наглядного представления показателей работы учреждений: отчетная документация, статистические сводки.

Особенность: отображение информации в виде двух- или трехмерных графиков, диаграмм, гистограмм.

Создается средствами, встроенными в электронные таблицы, системы управления базами данных, статистические пакеты.



Иллюстративная графика

Предназначена для создания изображений, играющих роль иллюстративного материала.

Особенность: произвольное рисование и черчение на экране компьютера.

Создается графическими редакторами.

Иллюстративная графика

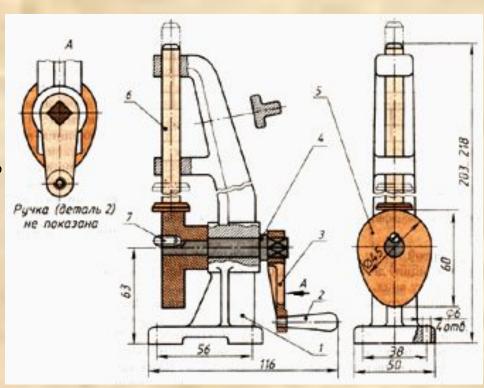
На основе регулярных структур

На основе нерегулярных структур

Художественная или рекламная графика

Предназначена для создания рекламных роликов, видеоуроков, видеопрезентаций.

Особенность: возможность создания реалистических изображений.

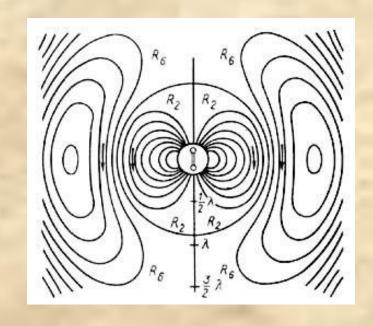


Конструкторская графика

Предназначена для автоматизации чертежных и конструкторских работ.

Особенность: создание как плоских (проекции, сечения), так и пространственных трехмерных изображений.

Применяется в системах автоматизированного проектирования: AutoCad, PCAD, Sun, Apollo, Graphics


Научная графика

Предназначена для оформления научных расчетов, содержащих математические, химические, физические формулы, а также задач картографии.

$$CV = \frac{\sum_{i=1}^{13} (x_i - x_{cp}) \cdot (y_i - y_{cp})}{n}$$

Особенность: проводит вычислительные эксперименты с представлением результатов.

Системы компонуются пакетами математической поддержки и моделирования: TEX, ChiWriter

Компьютерная анимация

Предназначена для получения движущихся изображений.

Особенность: создаются рисунки начального и конечного положения объектов, промежуточные состояния рассчитывает и изображает компьютер на основе математического описания.

Пакеты: Macromedia Flash MX, 3D Studio Max.

Мультимедиа

Предназначена для объединения высококачественного изображения со звуковым сопровождением.

Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.

Пакеты: HyperMethod, VideoMagic, ToolBook.

Когнитивная графика

Предназначена для научных абстракций, способствует рождению нового научного знания.

Особенность: образно представляет различные математические закономерности для доказательства законов функционирования сознания.

Создается с помощью мощных ЭВМ и высокопроизводительных средств визуализации.

Представление графической информации в памяти компьютера (оцифровка)

Принципы:

- Экран монитора представляется в виде сетки пронумерованных точек-пикселов (picture element). Любая точка на экране определяется путем отсчета квадратов сетки вверх/вниз и вправо/влево.
- Графическая информация (форма, цвет, отражение, тень и т. п.) задается числами.
- Декомпозиция произвольного цвета на основные составляющие: красный R, зеленый G, синий B (система RGB).

Виды компьютерной графики (по форме представления в памяти компьютера):

- •Растровая графика.
- •Векторная графика.
- •Фрактальная графика.

Отличие: различные принципы формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровая графика

Изображение кодируется в явном виде по точкам (пикселам) в битовой карте (bitmap).

Запоминается в файле в виде набора чисел (координат пикселов): две координаты задают положение на плоскости; одна — цвет.

Пиксел характеризуется яркостью и цветом.

Растровая графика

Растровая графика

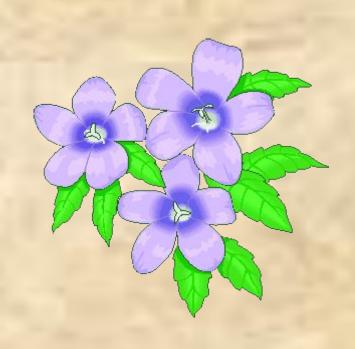
Недостатки

- Изменение качества при масштабировании
- Растр, полученный на технике высокого уровня трудно воспроизводится без искажений на технике уровнем ниже
- Большие размеры файлов

Достоинства

- Отражает и передает всю гамму оттенков и тонких эффектов, присущих реальному изображению
- Более точно воспроизводит основные характеристики фотографии

Векторная графика


Изображение описывается совокупностью геометрических фигур, определяющих контур рисунка.

Запоминается в виде набора математических формул (графических примитивов).

Примитив описывает отдельные элементы: линии, дуги, окружности.

Векторная графика

Векторная графика

Недостатки

• Не отображает сплошные области

Достоинства

• Требует меньше памяти

Сравнение растровой и векторной графики

	Растровая	Векторная
Способ	Строится из	Описывается набором
представления	множества	формул
изображения	пикселей	
Представление	Эффективно	Не позволяет получать
объектов реального	используется	фотографическое
мира		качество
Качество	Возникают	Преобразуются без
редактирования	искажения	потери качества
изображений		
Особенности печати	Полное	Иногда нет
изображения	соответствие	соответствия

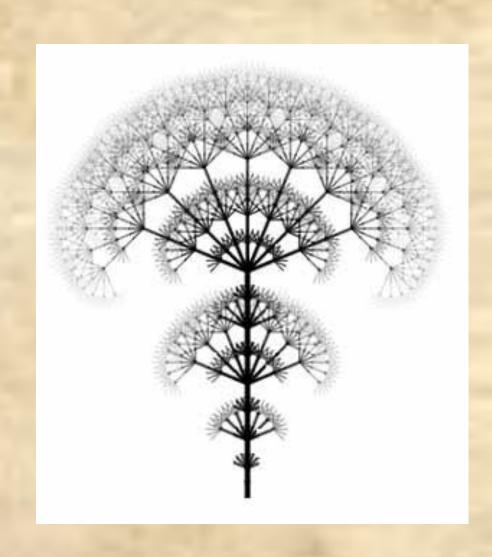
Фрактальная графика

Изображение основана на математических вычислениях.

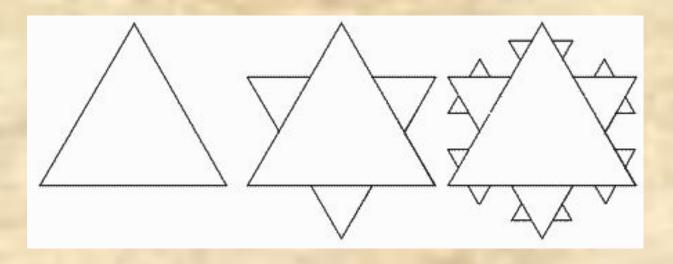
Базовым элементом является математическая формула. Объекты в памяти компьютера не хранятся и изображение строится по уравнениям.

Изображаются как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Фрактальная графика


Фрактал – геометрическое образование, представляющее собой систему самоподобных фигур, расположенных относительно друг друга закономерным образом.

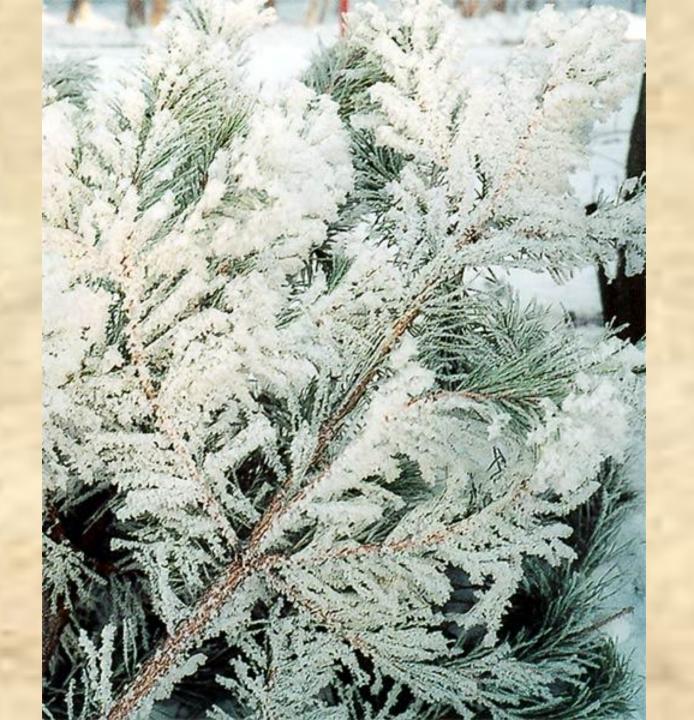
Открыл фракталы – польский математик Бенуа Мандельброт. Главный труд – "Фрактальная геометрия природы« (1982 г.).


Фрактальная графика

Основное свойство фракталов — **самоподобие.**

Создаются изображения объектов, которые, на первый взгляд, лишены самоподобия составляющих их элементов.

Построение фрактальной графики



Фрактальный треугольник

Сколь угодно сложный и вроде бы неалгоритмизируемый процесс может быть описан математически.

3D графика (трехмерная графика)

Предназначена для создания реалистичной модели объекта.

Использует геометрические примитивы: шар, куб, конус и т.п.

Описывается расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент.

Пакеты: 3D Studio Max; Softimage 3D; Maya

Полигональная графика

Объект полигональной графики задается набором полигонов.

Полигон - это плоский многоугольник. Простейшим вариантом являются треугольные полигоны, ибо, как известно, через любые три точки в пространстве можно провести плоскость.

Каждый полигон задается набором точек.

Аналитическая графика

Объекты задаются аналитически, т.е. формулами.

Объекты обтекаемой формы получаются путем комбинирования различных формул друг с другом.

Сложность заключается в нахождении формулы требуемого объекта.

Аналитические объекты могут создаваться как тела вращения.

Сплайновая графика

Описание посредством формул внешних обводов объекта (сплайнов).

Сплайн – гибкая линия.

Задают координаты сравнительно небольшого числа опорных точек, лежащих на искомой поверхности, а через эти точки проводят плавные поверхности.

Создание графических изображений

• Ввод графических данных в компьютер с «бумажных» носителей.

• Создание графического изображения с помощью специального программного обеспечения.

Ввод графических данных:

- Сканеры.
- Цифровые фотоаппараты и видеокамеры.
- Дигитайзеры (для ввода картографической информации).

Сканер предназначен для оптического ввода текстов, рисунков, фотографий, слайдов и их оцифровки.

Оцифровка — представление графических данных в электронном виде.

Создание графических изображений

Графические (пакеты) процессоры —

инструментальные средства, позволяющие создавать и модифицировать графические образы с использованием различных видов графики.

Графические пакеты

Пакеты растровой графики

Пакеты векторной графики

Пакеты фрактальной графики

Пакеты растровой графики

Предназначены для работы с рисунками и фотографиями.

Включают в себя набор средств по кодированию изображения в цифровую форму

- Adobe PhotoShop
- Picture Publisher
- Photo Works Plus
- Aldus Photo Styler

Пакеты векторной графики

Предназначены для профессиональной работы, связанной с художественной и технической иллюстрацией.

Занимают промежуточное положение меду САПР и настольными издательскими системами.

- CorelDraw
- Adobe Illustrator
- Aldus Free Hand
- Professional Draw

Пакеты фрактальной графики

Предназначены для автоматической генерации изображений путем математических расчетов.

Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании.

- Fractint
- Manpwin
- Mkokh
- 3D Studio Max

Графические пакеты включают средства:

- Создания графических изображений.
- Выравнивания изображений.
- Манипулирования объектами.
- Импорта/экспорта графических объектов.
- Настройки цвета.
- Вывода на печать с настройкой образа.

Технологии, используемые при работе с графикой

- Flash-технология.
- Технологии виртуальной реальности
- OLE

Flash-технология

Flash-объекты – интерактивные элементы Webстраниц (анимация+элементы управления).

Размещаются как обычные графические элементы.

Компактны. Обеспечивают быструю передачу информации по медленным каналам связи.

Технологии виртуальной реальности

1. Описание трехмерных сцен.

VRML (Virtual Reality Modelling Language) – язык описания трехмерных изображений.

Стандартное расширение – .WRL.

2. Java-аплеты.

• **BMP** (bitmap)

Битовая карта. Большой объем файла.

• **GIF** (Graphics Interlaced Format)

Хранит растровые изображения с сжатием. Записывает информацию «через строчку» (Interlaced). Содержит не более 256 цветов, что недостаточно для полиграфии.

• JPEG (Joint Photographic Experts Group)

Использует алгоритм сжатия с потерями. Искажает изображения, что не заметно при простом просмотре. Размер файла в 500 раз меньше, чем ВМР. Хранит изображения с большой глубиной цвета.

•WMF (Windows Metafile)

Формат Windows. Служит для передачи векторов через буфер обмена. Искажает цвет, не может сохранять ряд параметров, которые могут быть присвоены объектам в различных векторных редакторах, не понимается программами на Macintosh.

• TIFF (Tagged Image File Format)

Аппаратно независимый формат. Эффективен при импорте растровой графики в векторные программы и издательские системы. Ему доступен весь диапазон цветовых моделей и фотонаборные автоматы.

•PDF (Portable Document Format))

Независит от платформы. Хранит иллюстрации (векторные и растровые) и текст, причем со множеством шрифтов и гипертекстовых ссылок.

•PSD (Adobe Photoshop Document)

Формат растрового редактора Photoshop. Позволяет записывать изображение со многими слоями, их масками, дополнительными каналами, контурами и другой информацией.

- •FPX (FlashPix)
 - Общий формат обмена данными. Используется многими цифровыми фотокамерами.
- •FIF (Fractal Image Format)

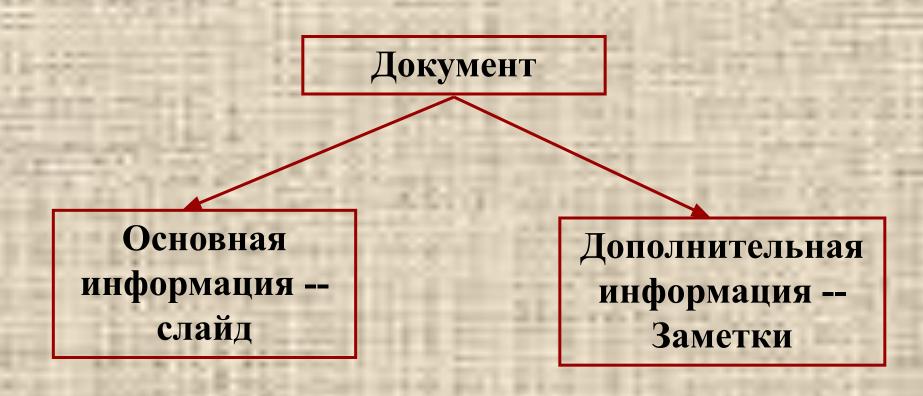
Формат фрактальных изображений. Обычно файлы этого формата получаются несколько меньше файлов в формате jpg. С ростом увеличения показывают все новую степень детализации структуры, сохраняя эстетику изображения.

Стандарт WIMP (Windows Image Menu Pointer)

Интерфейс, обеспечивающий размещение на экране окон, содержащих образы программ и меню действий.

- •Панель содержит меню действий и линейки инструментов и цветов.
- •Линейка инструментов состоит из набора графических символов, требующихся для построения любого рисунка.
- •Линейка цветов содержит цветовую гамму монитора ПК.

Презентационная графика


Пакеты являются конструкторами графических образов деловой, научной, образовательной информации. Функция: в наглядной и динамичной форме представлять результаты аналитического исследования.

Пакеты: MS PowerPoint, Harvard Graphics, WordPerfect Presentations, Freelance Graphics.

Схема работы:

- ✓ Разработка общего плана.
- ✓ Выбор шаблона оформления элементов.
- ✓ Формирование и импорт элементов (графика, таблицы, звук, видео и т.п.).
- ✓ Настройка презентации.

Объект обработки – документ с расширением .ppt.

Способы создания презентации:

- Самостоятельно
- На основе шаблона

Макет – схема размещения структурных элементов.

Элементы:

- Текст.
- Объекты OLE.
- Кнопки управления.

Каждый элемент выделяется меткой-заполнителем.

Режимы работы:

- Слайдов.
- Структуры.
- Сортировщик слайдов.
- Заметок.