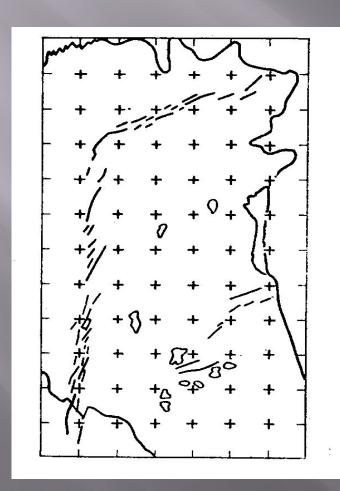

РАЗВИТИЕ МОДЕЛИРОВАНИЯ

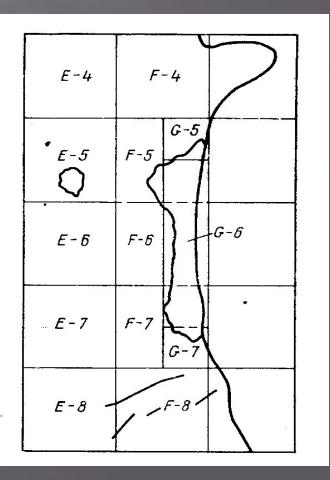
Уравнение материального баланса

■ В 1936 г. Шильтуис вывел уравнение сохранения массы для продуктивного пласта. При выводе этого уравнения пласт рассматривался как однородный с постоянными свойствами породы и .флюида. Баланс составлялся путем учета всех масс флюида, втекающего и вытекающего за данный период времени. Уравнение материального баланса иногда называют моделью нулевой размерности, так как внутри системы порода — флюид не происходит изменений параметров ни в одном направлении.

Аналоговые резистивноемкостные сетки

Аналоговые резистивно-емкостные сетки обычно называют электрическими анализаторами (электроинтеграторами), в которых для создания электрической модели нефтяного пласта применяют законы электротехники и гидравлики. Анализируя изменения электрических параметров во времени при различных воздействиях, с помощью простых переводных коэффициентов можно оценить процесс разработки пласта.


Аналогия между характеристиками флюидов и понятиями,


Наименование величины	Размерность	Наименование величины	Размерность
Давление р	кгс/см2	Напряжение Е	В
Добыча/закачка q	см ³ /с	Сила тока і	A
Объем флюидов (запасы) Vc		Емкостъ электрическая се	мкФ
Проводимость kh/μ		Электрическая проводимость 1/R	Ом
Истинное время процесса t	С	Время моделирования t	c

Электролитические модели

Электролитические модели стационарных процессов разрабатывались некоторыми исследователями, такими, как Ботсет, Виков и Маскет, с целью анализа движения фронтов флюидов в пласте. Принцип действия этих моделей основан на аналогии между законом Ома для электрического тока в проводнике и законом Дарси для пористой среды. Если источники и стоки при фильтрации флюида и границы прристой среды определены с достаточной степенью точности, то для исследования движения флюидов в стационарных условиях обычно применяют модель, изготовленную из промокательной бумаги или пластин желатина. При этом обеспечивается геометрическое подобие модели, а масштаб по вертикали увеличивается. Напряжение прикладывается в точках расположения скважин (в данном случае к медным электродам), и продвижение фронта флюида прослеживается по движению окрашенных ионов от отрицательного электрода к положительному. Среда (промокательная бумага или пластины желатина) предварительно пропитывается бесцветным раствором нитрата цинка. Ионы меди движутся под прямым углом к эквипотенциальным линиям поля. Рис. 1.7 иллюстрирует характер вытеснения флюида.

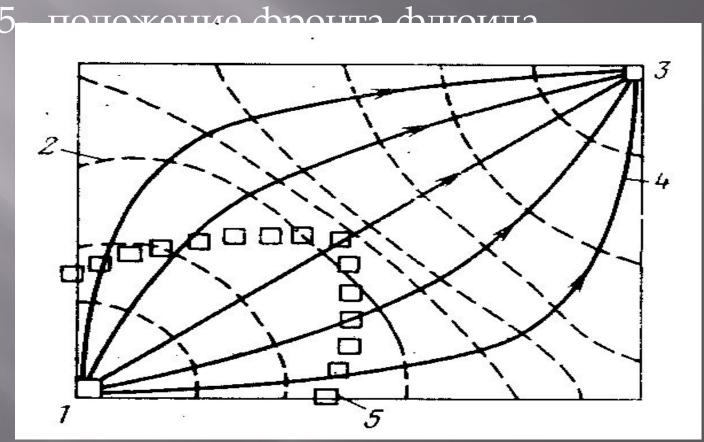
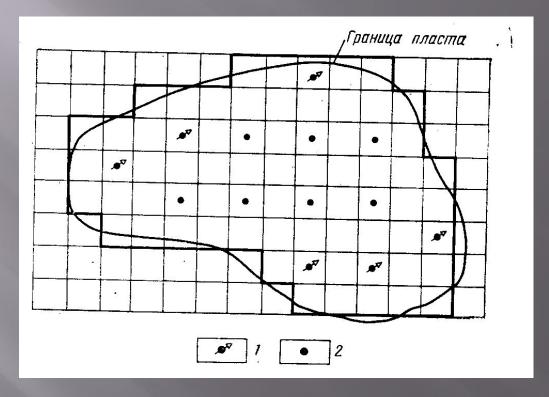
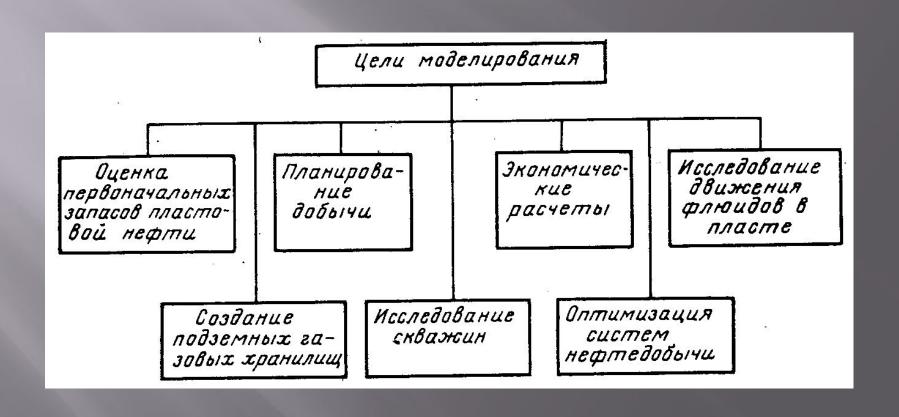
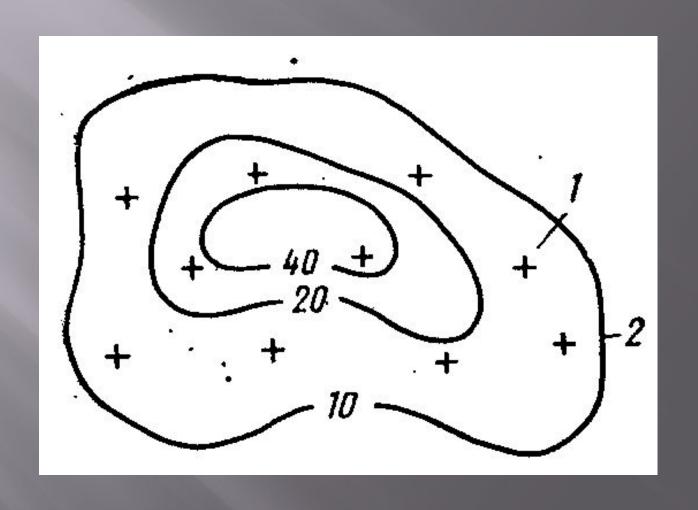

Рис. 1.7. Электролитические модели: 1-экплуатационная скважина; 2 - нагнетательная скважина

Рис 1.8. Потенциометрическая модель:


1- нагнетательная скважина: 2эквипотенциальная поверхность; 3эксплуатационная скважина; 4-линия тока;


Численные модели

Для решения математических уравнении, которые описывают поведение флюидов в пористой среде, применяют численные модели и цифровые вычислительные машины. При этом обычно используется метод сеток. Численные модели были разработаны в середине 50-х годов Писманом и Рэкфордом, после чего усовершенствованы таким образом, что можно моделировать картину процесса разработки почти любого месторождения.


Типичная сеточная модель представлена на Рис. 1.9

ЦЕЛЬ МОДЕЛИРОВАНИЯ ПЛАСТОВ

Рис. 1.10 Схема различных направлений применения моделирования

Дебиты нефти и газа - основные выходные данные модели. Они могут быть получены как по отдельным скважинам, по участкам (Рис. 1.13), так и по всему пласту. Типичные результаты моделирования показаны на

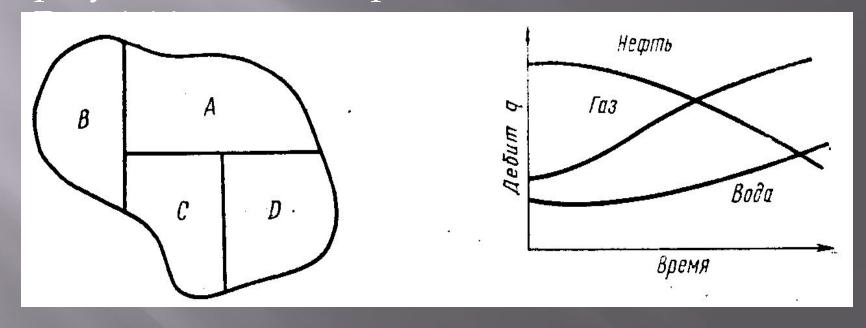
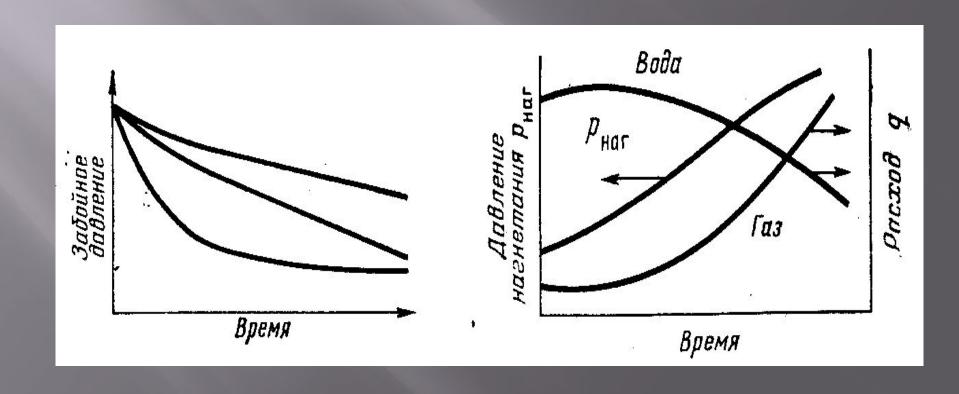



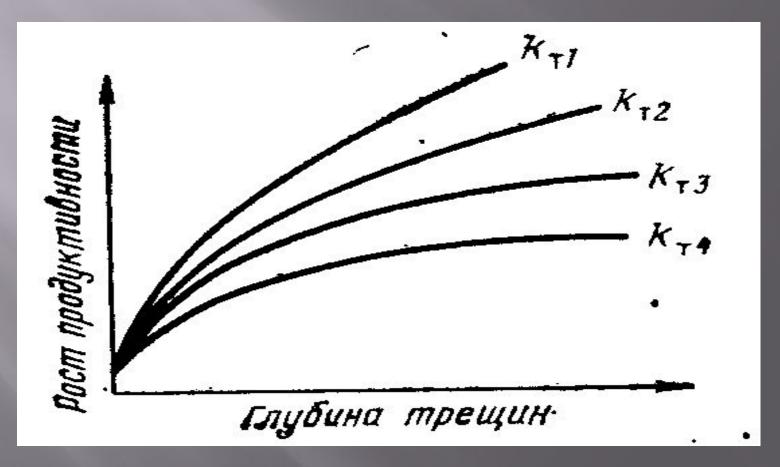
Рис.1.13 Схема расчленения пласта на участки Рис1.14 Кривые дебитов, построенные с помощью А, В, С, Д - участки

На Рис. 1.15 показано изменение забойного давления в эксплуатационных скважинах.

В проектах вторичных методов разработки вне зависимости от вида закачиваемого агента (воды или газа) необходимо знать его объемы и давления нагнетания (Рис. 1.16)

Моделирование скважин

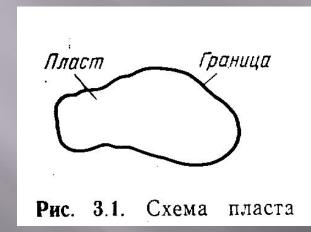
В процессе разработки большое значение имеют правильный выбор способа вскрытия пласта и выбор режима эксплуатации скважины (рис. 1.22). В некоторых случаях трудно совместить моделирование пласта в целом и моделирование работы отдельных скважин, которое позволило бы получить


Рис. 1.22. Схема притока флюида к скважинам

Перфорационные отверстия

Вода

- 1) критические дебиты (для предотвращения конусообразо-вания газа и воды);
- 2) максимальные эффективные дебиты (для обеспечения оптимальной работы скважин);
- 3) степень воздействия интервалов перфорации и размеров трещин на продуктивность скважины (рис. 1.23).


Рис. 1.23. Зависимость продуктивности скважин от трещино-ватости коллектора в призабойной зоне: k_{T1} , k_{T2} - коэффициенты проницаемости трещин

Преимущество моделирования

Известно, что месторождение можно разработать только один раз, поэтому любая ошибка в этом процессе неисправима. Однако, применяя метод моделирования, можно выполнить эту процедуру несколько раз и изучить различные варианты. При использовании моделирования в качестве средства управления достигается более эффективное использование пластовой энергии, что принпипе приводит к увеличению конечной нефтеотдачи и к <u>более экономичной разработке</u> месторождения.

СОСТАВЛЕНИЕ УРАВНЕНИЙ ДЛЯ МОДЕЛИРОВАНИЯ ПЛАСТА

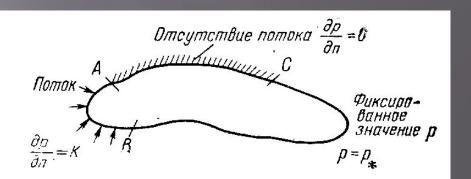
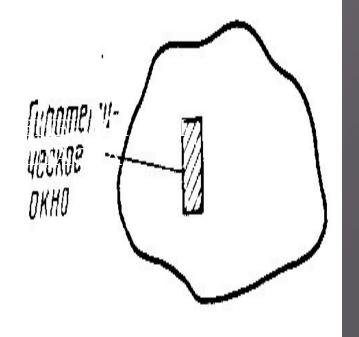



Рис. 3.2. Схема граничных условий

Рис. 3.3. Схема системы

