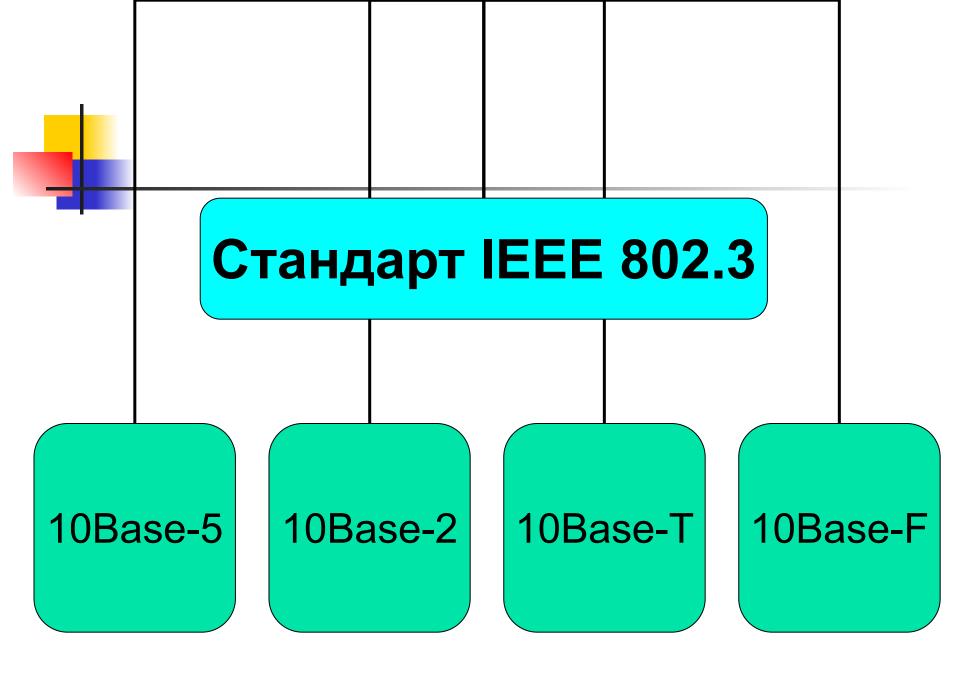
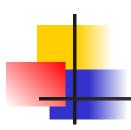
Стандарты построения локальных сетей

Борисов В.А.

КАСК – филиал ФГБОУ ВПО РАНХ и ГС
Красноармейск 2011 г.

Стандарты, регламентирующие проектирование локальных сетей


- IEEE 802.1 управление сетями;
- IEEE 802.2 управление логическим соединением и доступом к среде;
- IEEE 802.3, 802.4, 802.5 управление доступом к среде передачи данных;
- IEEE 802.6 городские сети.



Ethernet

Ethernet

• Самый распространенный стандарт построения локальных сетей.

Для всех модификаций технология
 Ethernet обеспечивает скорость передачи
 данных в 10 Мбит/с и использует один и
 тот же метод доступа к разделенной
 среде передачи данных.

Таблица 1.1. Характеристики спецификаций технологии Ethernet

Характеристики	Спецификации				
	10Base-5	10Base-2	10Base-T	10Base-F	
Тип кабеля	Толстый коаксиальный кабель RG-8/11	Тонкий коаксиальный кабель RG-58	UTP3, UTP4, UTP5	Одномодовое и многомодовое оптоволокно	
Максимальное число узлов в сегменте	100	30	1024	1024	
Максимальное число узлов в сети	296	86	1024	1024	
Максимальная дли- на сегмента, м	500	185	100	2000	
Топология	Общая шина	Общая шина	Звезда	Звезда	
Диаметр сети, м	2500	925	500	2500	

10Base-5

- Среда передачи данных «толстый» коаксиальный кабель.
- Позволяет подключать до 100 рабочих станций к одному непрерывному сегменту кабеля длиной до 500 м.
- Расстояние между соседними подключениями должно быть кратно 2,5 м.

Трансивер

 Специальное приемопередающее устройство, служащее для подключения сетевого адаптера к коаксиальному кабелю.

Правило 5-4-3

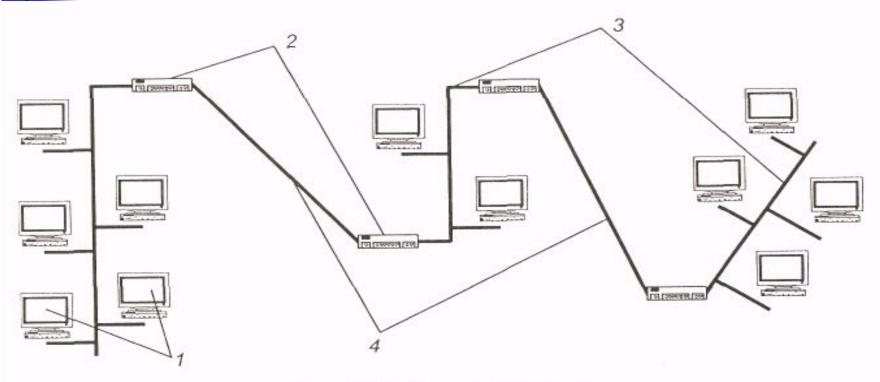


Рис. 1.11. Правило 5-4-3:

I — рабочая станция; 2 — повторитель; 3 — нагруженный сегмент; 4 — ненагруженный сегмент

10Base-2

- Среда передачи данных «тонкий» коаксиал, позволяющий подключить до 30 компьютеров к одному непрерывному сегменту, длина которого не должна превышать 185 м.
- Расстояние между соседними узлами должно быть кратно 0,5 м.

10Base-T

- Является дополнением к стандарту 802.3.
- Среда передачи данных кабель на основе неэкранированных витых пар категории 3.

Правило 4 хабов

 Между двумя любыми станциями сети не должно быть больше четырех концентраторов.

Обжим

• Присоединение разъемов к кабелю.

10Base-F

- Реализация Ethernet на оптоволоконном кабеле.
- Длина сегмента 2000 м.
- Количество сегментов в сети до пяти.
- Максимальная длина сети не более 2500 м.

Token Ring

Token Ring

- Строятся по топологии «кольцо» и используют маркерный метод доступа к среде передачи данных.
- Передача данных в сетях может осуществляться на скоростях в 4 и 16 Мбит/с.

Рис. 1.12. Сеть на основе технологии Token Ring: логическая топология — «кольцо»; физическая — «звезда»


- Максимальная длина кольца Token Ring не более 4000 м.
- Соединение компьютеров в кольцо делает сеть более отказоустойчивой по сравнению с сетями Ethernet.

FDDI

- Физическая среда передачи данных оптоволоконный кабель.
- Сеть строится на основе двух оптоволоконных колец: первичного и вторичного.

Рис. 1.13. Механизм обеспечения высокой отказоустойчивости работы сети: a — нормальное функционирование сети; δ — разрыв кабеля, сворачивание сети в одно кольцо; δ — множественные повреждения кабеля, сеть распадается на несколько независимых колец; I — первичное кольцо; 2 — вторичное кольцо; 3 — разрыв кабеля

- Скорость передачи данных 100 Мбит/с.
- Максимальное количество узлов 500.

Token Bus

Token Bus

- Используется маркерный метод доступа к разделяемой среде.
- Вместо передачи маркера от станции к станции по кругу маркер передается от «старшей» станции к «младшей».

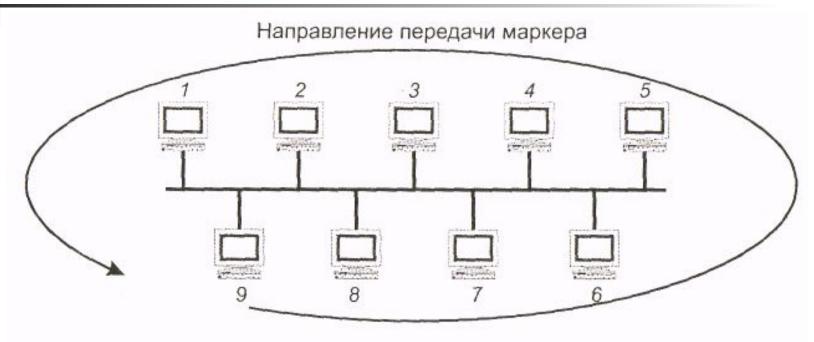


Рис. 1.14. Передача маркера в сетях Token Bus

Таблица 1.2. Характеристики спецификаций, использующих маркерный метод доступа к среде передачи данных

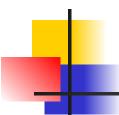
Vanaumanuamuu	Спецификации			
Характеристики	Token Ring	FDDI	Token Bus	
Скорость передачи дан- ных, Мбит/с	4 или 16	100	10	
Тип кабеля	STP 1, UTP 3, UTP 6, оптоволокно	Оптоволокно, UTP 5	Коаксиал	
Максимальное число узлов в сети	260 для STP, 72 для UTP	500	255	
Максимальная длина сегмента, м	100	2000 для много- мод. оптоволокна, 40 000 для одно- мод. оптоволокна, 100 для UTP 5	610	
Топология	Звезда/кольцо	Двойное кольцо	Общая шина, звезда, дерево	
Диаметр сети, км	4	100	6	

Fast Ethernet

Fast Ethernet

• Физическая среда передачи данных - витая пара и оптоволокно.

Таблица 1.3. Характеристики спецификаций технологии Ethernet и 100VG-AnyLAN


Характеристики	Спецификации				
	100Base-TX	100Base-T4	100Base-FX	100VG-AnyLAN	
Тип кабеля	UTP 5, STP 1	UTP 3	Многомодовое оптоволокно	UTP 3, UTP 4, UTP 5, STP 1, оптоволокно	
Метод доступа	CSMA/CD	CSMA/CD	CSMA/CD	Demand Priority	
Максимальное число узлов в сети	1024	1024	1024	1024	
Максимальная длина сегмента, м	100	100	2000 при полнодуплекс- ной передаче, 412 при полудуплексной передаче		
Топология	Звезда	Звезда	Звезда	Звезда	
Диаметр сети, м	205	205	2	1100	

Полнодуплексная передача

• Одновременная передача данных в обоих направлениях.

Полудуплексный режим

 Режим, при котором обмен данными осуществляется путем чередования приема и передачи.

100VG-AnyLAN

100VG-AnyLAN

 Метод доступа к среде передачи данных приоритетный доступ по требованию.

Gigabit Ethernet

Таблица 1.4. Характеристики спецификаций технологии Gigabit Ethernet

Характе- ристики	Спецификации				
	1000Base-LX	1000Base-SX	1000Base-T	1000Base-CX	
Тип кабеля	UTP 5, STP 1	Оптоволокно	UTP 5	STP Twinax	
Максималь- ная длина сегмента, м	316 — при полудуп- лексной передаче. 550 — при полно- дуплексной передаче по многомодовому волокну. 5000 — при полно- дуплексной передаче по одномодовому волокну	316 — при полуду- плексной передаче по волокну 50/125. 550 — при полно- дуплексной пере- даче по волокну 50/125. 275 — при передаче по волокну 62,5/125	100	25	

10 Gigabit Ethernet

10 Gigabit Ethernet (10 GbE)

 Область использования Ethernet расширилась до масштабов городских (MAN) и глобальных (WAN) сетей.

Wireless Ethernet

Wireless Ethernet

 Беспроводные локальные сети, позволяющие объединить в единую информационную систему разрозненные локальные сети и компьютеры для обеспечения доступа всех пользователей этих сетей к единым информационным ресурсам.

Wi-Fi

 В основе технологий беспроводных сетей лежит принцип радиосвязи между узлами сети.

Таблица 1.5. Характеристики спецификаций Radio Ethernet

V	Спецификации			
Характеристики	IEEE 802.11b	1EEE 802.11g	IEEE 802.11a	
Скорость передачи данных, Мбит/с	11	До 54	До 54	
Число каналов	3	3	12	
Расстояние передачи дан- ных, м:				
в закрытых помещениях	30 (11 Мбит/с), 91 (1 Мбит/с)	30 (54 Мбит/с), 91 (1 Мбит/с)	12 (54 Мбит/с), 91 (6 Мбит/с)	
в открытых помещениях в пределах прямой видимости	120 (11 Мбит/с), 460 (1 Мбит/с)	120 (54 Мбит/с), 460 (1 Мбит/с)	30 (54 Мбит/с), 305 (6 Мбит/с)	
Схема модуляции	DSSS	OFDM	OFDM	
Рабочая частота, ГГц	2,4 (2,4—2,4835)	2,4 (2,4—2,4835)	5 (5,15—5,350 и 5,725—5,825)	