СТРАТЕГИИ, МОДЕЛИ И СИСТЕМЫ ПРЕДОТВРАЩЕНИЯ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА В ИНФОРМАЦИОННУЮ СИСТЕМУ ФИРМЫ

Борисов В.А.

КАСК – филиал ФГБОУ ВПО РАНХ и ГС
Красноармейск 2011 г.

Стратегии обеспечения ИБ фирм

Стратегия безопасности

 Подразумевает множество условий, при которых пользователи системы могут получить доступ к информации и ресурсам, и определяет требования, которые должны быть выполнены при разработке конкретной системы.

Стратегия безопасности

 Множество процедур, технологий и требований к конкретной системе.

Модель безопасности (МБ)

 Абстрактное описание поведения целого класса систем без рассмотрения конкретных деталей их реализации.

Стратегия безопасности КС

Формальный вид Неформальный вид

Неформальные СБ

• Описание правил доступа субъектов к объектам в виде таблиц.

Неформальные СБ

Преимущества

 Легче для понимания малоквалифицированными пользователями и разработчиками.

Недостатки

Легче допустить логические ошибки, а более сложные выражения будет затруднительно представить в табличной форме.

Формальные СБ

В их основе лежат модели безопасности.

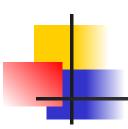
Преимущества формальной СБ

 Отсутствие противоречий в СБ и возможность теоретического доказательства безопасности системы при соблюдении всех условий СБ.

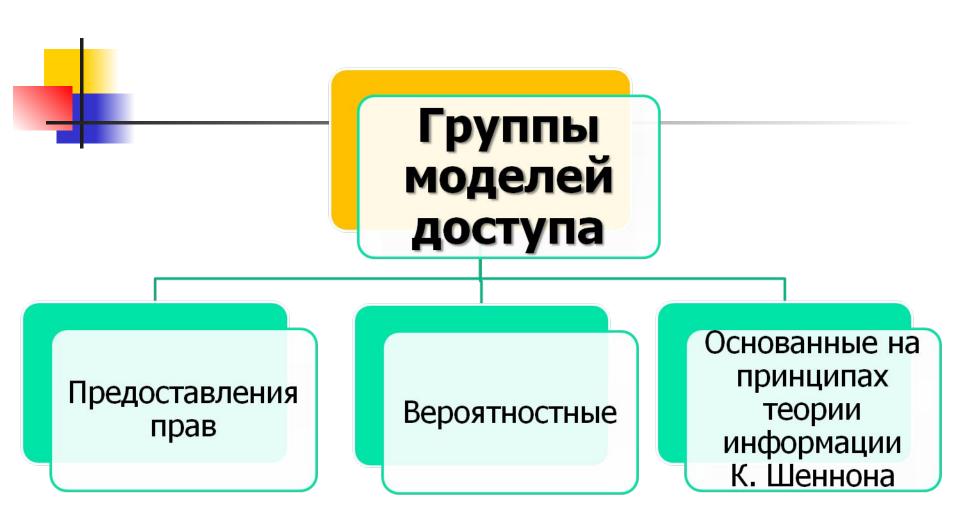
Группы моделей безопасности

- разграничения доступа и мандатные модели;
- контроля целостности;
- отказа в обслуживании;
- анализа безопасности программного обеспечения (ПО);
- взаимодействия объектов вычислительной сети (ВС).

Противодействие разрушающим программным средствам (РПС)


- создание специальных программных средств, предназначенных для поиска и ликвидации конкретных видов РПС;
- проектирование ВС, архитектура и МБ которых либо не допускает существование РПС, либо ограничивает область их активности и возможный ущерб;
- создание и применение методов и средств анализа ПО на предмет наличия в них угроз ИБ ВС и элементов РПС.

Анализ безопасности ПО


 Процедура анализа программного обеспечения на наличие в них угроз ИБ ВС.



Модели безопасности по разграничению доступа в систему

 Наиболее важными являются характеристики множества субъектов и объектов системы, по которым доступа могут быть классифицированы модели разграничения.

Система передачи военных сообщений

Классификация

 Обозначение, накладываемое на информацию, которое отражает ущерб, причиненный неавторизованным доступом.

Решетка

• Множество классификаций и отношение между ними.

Степень доверия пользователю

• Уровень благонадежности персоны.

Пользовательский идентификатор (login)

 Строка символов, используемая для того, чтобы отметить пользователя системы.

Пользователь

• Персона, уполномоченная для использования системы.

Роль

• Работа, исполняемая пользователем.

Объект

• Одноуровневый минимальный блок информации в системе, который имеет классификацию.

Контейнер

 Многоуровневая информационная структура, которая имеет классификацию и может содержать объекты и другие контейнеры.

Сущность

• Объект или контейнер.

 Требование степени доверия — атрибут некоторых контейнеров.

Идентификатор (ID)

• Имя сущности без ссылки на другие сущности.

- Ссылка на сущность прямая, если это идентификатор сущности.
- Ссылка на сущность косвенная, если это последовательность двух или более имен сущностей.

Операция

• Функция, которая может быть применена к сущности.

Множество доступа

 Множество троек (пользовательский идентификатор или роль, операция, индекс операнда), которое связано с сущностью.

Ограничения безопасности

Авторизация

Пользователь может запрашивать операции над сущностями, только если пользовательский идентификатор или текущая роль присутствуют в множестве доступа сущности вместе с этой операцией и со значением индекса, соответствующим позиции операнда, в которой сущность относят к требуемой операции.

Классификационная иерархия

 Классификация контейнера всегда больше или равна классификации сущностей, которые он содержит.

Изменения в объектах

 Информация, переносимая из объекта, всегда наследует классификацию данного объекта.

Просмотр

 Пользователь может просматривать только сущности с классификацией меньше, чем классификация устройства вывода и степень доверия к пользователю.

Доступ к объектам, требующим степени доверия

 Пользователь может получить доступ к косвенно адресованной сущности внутри объекта, требующего степени доверия, только если его степень доверия не ниже классификации контейнера.

Преобразование косвенных ссылок

 Пользовательский идентификатор признается законным для сущности, к которой он обратился косвенно, только если он авторизован для просмотра этой сущности через ссылку.

Требование меток

 Сущности, просмотренные пользователем, должны быть помечены его степенью доверия.

Установка степеней доверия, ролей, классификации устройств

 Только пользователь с ролью офицера безопасности системы может устанавливать данные значения.

Понижение классификации информации

 Никакая классифицированная информация не может быть понижена в уровне своей классификации, за исключением случая, когда эту операцию выполняет пользователь с ролью «пользователь, уменьшающий классификацию информации».

Уничтожение информации

 Операция уничтожения информации проводится только пользователем с ролью «пользователь, уничтожающий информацию».

Формальная модель

 Является базисом для спецификации и реализации системы.

Модель защищенности сети

 Дает описание требования безопасности для построения защищенной сети.

Предположения безопасности модели сети

- На хостах сети существует надежная схема пользовательской аутентификации.
- Каждый пользователь и процесс в сети имеет уникальный идентификатор.
- Только пользователь с ролью «офицер безопасности сети» может присваивать классы безопасности субъектам и компонентам сети и роли пользователям.

Предположения безопасности модели сети

- Все сущности сети имеют сравнимые классы безопасности.
- Имеет место надежная передача данных по сети.
- В сети реализована надежная криптозащита.

Вероятностные модели

• Исследуют вероятность преодоления системы защиты за определенное время.

Вероятностные модели

Достоинства

 числовая оценка стойкости системы защиты.

Недостатки

 изначальное допущение того, что система защиты может быть вскрыта.

Задача вероятностных моделей

• Минимизация вероятности преодоления системы защиты.

Вероятностные модели

Игровая модель

Модель системы безопасности с полным перекрытием

Игровая модель

• Описывает процесс эволюции системы защиты в течение времени.

 Система, в которой имеются средства защиты на каждый возможный путь проникновения.

 Определяют ограничения на отношение ввода/вывода системы.

Модель невмешательства

 Ввод высокоуровневого пользователя не может смешиваться с выводом низкоуровневого.

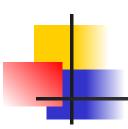
 Требует, чтобы низкоуровневые пользователи не были способны использовать доступную им информацию для получения высокоуровневой информации.

Модели контроля целостности информации в системе

Основные правила мандатной модели целостности

- Правило «нет чтения снизу»
 определяется как запрет субъектам на
 чтение информации из объекта с более
 низким уровнем целостности.
- Правило «нет записи наверх» определяется как запрет субъектам на запись информации в объект с более высоким уровнем целостности.

Модель понижения уровня субъекта


 Разрешает осуществлять чтение снизу, но в результате такого чтения уровень целостности субъекта понижается до уровня целостности объекта.

Модель понижения уровня объекта

 Разрешает запись наверх, но снижает уровень целостности объекта до уровня целостности субъекта, осуществлявшего запись.

Модели защиты при отказе в обслуживании

 Монитор пересылок безопасных вычислительных систем служит промежуточным звеном при запросе услуг пользователями.

 Предполагает, что для выполнения нужного задания субъектам необходимы определенные пространственные и временные требования к ресурсам.

Модели анализа безопасности ПО и безопасности взаимодействия объектов ВС

Наиболее перспективным с точки зрения анализа безопасности представляется объектно-ориентированный подход, рассматривающий РПС как сущности, обладающие определенной структурой и свойствами, вступающие во взаимодействие с другими элементами ВС, такими как программы и данные.

Легитимные действия

 Действия программы или пользователя, не приводящие к ущербу безопасности и целостности системы.

Нелегитимные действия

 Действия программы или пользователя, наносящие ущерб безопасности или целостности системы.

 Отличие понятия легитимности отношений от СБ состоит в том, что СБ служит упрощенной моделью реального распределения ролей пользователей и функций программ в системе.

Модель безопасности взаимодействия объектов ВС

 Сетевая ОС Novell Netware является модной и распространенной операционной системой для локальных сетей.

- выбор модели безопасности, несоответствующей назначению или архитектуре ВС;
- неправильное внедрение МБ;
- отсутствие идентификации и (или) аутентификации субъектов и объектов;
- отсутствие контроля целостности средств обеспечения безопасности;

- ошибки, допущенные в ходе программной реализации систем обеспечения безопасности;
- наличие средств отладки и тестирования в конечных продуктах;
- ошибки администрирования.