
LESSON 2

1. Types of testing
2. Testing levels
3. Software Development Life Cycles modes

2

Manual and Automated

Manual Testing Automated Testing

Time consuming and tedious: Since test cases are
executed by human resources so it is very slow
and tedious.

Fast: Automation runs test cases significantly
faster than human resources.

Less reliable: Manual testing is less reliable as
tests may not be performed with precision each
time because of human errors.

More reliable: Automation tests perform
precisely same operation each time they are run.

Self-contained: Manual testing can be performed
and completed manually and provide
self-contained results.

Not self-contained: Automation can’t be done
without manual testing. And you have to
manually check the automated test results.

Implicit: Implicit knowledge are used to judge
whether or not something is working as
expected. This enables engineer to find extra
bugs that automated tests would never find.

Explicit: Automated tests execute consistently
as they don’t get tired and/or lazy like us
humans.

Manual testing is the process
through which software developers
run tests manually, comparing
program expectations and actual
outcomes in order to find software
defects

Automated testing is the process
through which automated tools run
tests that repeat predefined actions,
comparing a developing program’s
expected and actual outcomes.

VS

More info:

3

Verification and Validation

To ensure that work products
meet their specified
requirements.

To ensure that the product
actually meets the user’s needs,
and that the specifications were
correct in the first place.

Are we building
the product right?

Are we building
the right product?

4

Positive and Negative

In positive testing
our intention is

In negative testing our
intention is

to prove that an application will
work on giving valid input data.
i.e. testing a system by giving its
corresponding valid inputs.

to prove that an application will
not work on giving invalid
inputs.

5

Black-box, White-box, Grey-box

Black-box Testing is a software
testing method in which the
internal structure/ design/
implementation of the item
being tested is NOT known to
the tester.

White-box Testing is a software
testing method in which the
internal structure/ design/
implementation of the item
being tested is known to the
tester.

Grey-box Testing is a software
testing method which is a
combination of Black-box and
White-box Testing methods.

6

Testing the attributes of a component or system that do not relate to
functionality.

Non-functional characteristics are:
• Performance efficiency
• Compatibility
• Usability
• Reliability
• Security
• Maintainability

Testing based on an analysis of the specification of the functionality of a
component or system.

Functional testing

Non-functional testing

7

Functional testing Example #1
• Verify adding of two numbers (5+3 should be 8);

• Verify subtraction of two numbers (5-2 should be 3);

• Verify multiplication of two number (5*3 should be 15);

• Verify division of two numbers (10/2 should be 5);

• Verify getting radical of some number (√25 should be 5);

• Verify multiplication of some number by zero (5*0

should be 0);

• Etc.

8

Smoke testing
A subset of all defined/planned test cases that cover the main functionality of a
component or system, to ascertaining that the most crucial functions of a
program work, but not bothering with finer details.

Regression testing
Testing of a previously tested program following modification to ensure that
defects have not been introduced or uncovered in unchanged areas of the
software, as a result of the changes made. It is performed when the software or
its environment is changed.

Sanity testing
Sanity testing is a kind of Software Testing performed after receiving a software
build, with minor changes in code, or functionality, to ascertain that the bugs have
been fixed and no further issues are introduced due to these changes. The goal is
to determine that the proposed functionality works roughly as expected. If sanity
test fails, the build is rejected to save the time and costs involved in a more
rigorous testing.

9

Smoke Testing Sanity Testing

Smoke Testing is performed to ascertain that the critical
functionalities of the program is working fine

Sanity Testing is done to check the new functionality /
bugs have been fixed

The objective of this testing is to verify the "stability" of
the system in order to proceed with more rigorous
testing

The objective of the testing is to verify the "rationality" of
the system in order to proceed with more rigorous
testing

This testing is performed by the developers or testers Sanity testing is usually performed by testers

Smoke testing is usually documented or scripted
Sanity testing is usually not documented and is
unscripted

Smoke testing is a subset of Regression testing Sanity testing is a subset of Acceptance testing

Smoke testing exercises the entire system from end to
end

Sanity testing exercises only the particular component of
the entire system

Smoke testing is like General Health Check Up Sanity Testing is like specialized health check up

10

Performance testing
Testing with the intent of determining how efficiently a
product handles a variety of events.

Purposes:
✓ demonstrate that the system
meets performance criteria;

✓ compare two systems to find
which performs better;

✓ measure what parts of the
system or workload cause the
system to perform badly.

11

Load testing
A type of performance testing conducted to evaluate the

behavior of a component or system with increasing load, e.g.
numbers of parallel users and/or numbers of transactions, to
determine what load can be handled by the component or
system.

Purposes
✓ evaluation of performance and
efficiency of software

✓ performance optimization (code
optimization, server configuration)

✓ selection of appropriate hardware
and software platforms for the
application

A type of performance testing conducted to evaluate a system
or component at or beyond the limits of its anticipated or
specified work loads, or with reduced availability of resources
such as access to memory or servers

Purposes:
✓ the general study of the behavior of the
system under extreme loads

✓ examination of handling of errors and
exceptions under extreme load

✓ examination of certain areas of the
system or its components under the
disproportionate load

✓ testing the system capacity

Stress testing

Localization is the process of
adapting a globalized
application to a particular
culture/locale.

Internationalization is the process of
designing and coding a product so it
can perform properly when it is
modified for use in different
languages and locales.

Localization (L10N) testing checks
how well the application under test
has been Localized into a particular
target language.

Internationalization (I18N) testing
checks if all
data/time/number/currency
formats are displayed according to
selected locale and if all language
specific characters are displayed.

Localization & Internalization testing

14

UI Testing
The testing a product's graphical user interface to
ensure it meets its written specifications

Check if any UI recommendations exist for the application type your team
develop. Make sure dialogs you test comply with these recommendations.

15

Compatibility Testing
Compatibility testing is used to determine if your software is compatible with
other elements of a system with which it should operate, e.g. Browsers, Operating
Systems, or hardware.

This type of testing helps find out how
well a system performs in a particular
environment that includes hardware,
network, operating system and other
software etc.

It tests whether the application or the
software product built is compatible
with the hardware, operating system,
database or other system software or
not.

16

Usability Testing
Usability testing a non-functional testing technique that is a measure of how easily
the system can be used by end users. It is difficult to evaluate and measure but can
be evaluated based on the below parameters:
Level of Skill required to learn/use the software. It should maintain the balance for
both novice and expert user.

Time required to get used to in using the software.
The measure of increase in user productivity if any.
Assessment of a user's attitude towards using the software.

2. Test Levels

18

Component

Component (Unit)

Integration

System

Acceptance
Component (Unit) Test Level

When Component is
developed

Why To validate that each
unit of the software
performs as designed

How White-box testing

Testing on the Component (Unit) Test Level is called Component (Unit) testing

19

Integration

Integration

Component (Unit)

System

Acceptance
Integration Test Level

When Units to be integrated
are developed

Why To expose faults in the
interaction between
integrated units

How White-box/ Black-box/
Grey-box
Depends on definite
units

Testing on the Integration Test Level is called Integration testing

20

System

System

Integration

Component (Unit)

Acceptance
System Test Level

When Separate units are
integrated into System

Why To evaluate the
system’s compliance
with the specified
requirements

How Black-box testing

21

Acceptance

Acceptance

Integration

System

Component (Unit)

Acceptance Test Level
When Component is

developed
Why To evaluate the

system’s compliance
with the business
requirements and
assess whether it is
acceptable for delivery

How Black-box testing

Testing on the Acceptance Test Level is called Acceptance testing

22

Alfa & Beta Testing

Alfa testing takes place at the developer's site by the internal teams, before release
to external customers. This testing is performed without the involvement of the
development teams.

Beta testing also known as user testing takes place at the end users site by the end
users to validate the usability, functionality, compatibility, and reliability testing.

Beta testing adds value to the software development life cycle as it allows the
"real" customer an opportunity to provide inputs into the design, functionality, and
usability of a product. These inputs are not only critical to the success of the
product but also an investment into future products when the gathered data is
managed effectively.

3. SDLC models

24

WATERFALL

User
requirem

ents

System
requirem

ents

Global
design

Detailed
design

Implemen
tation

Testing

25

Waterfall

✓ Time spent early in the software
production cycle can lead to
greater economy at later stages

✓ Waterfall model places emphasis
on documentation

✓ Waterfall model has simple
approach and is more disciplined

✓ Easily identifiable milestones and
deliverables

✓ Track progress easily due to clear
stages

✓ Inflexible: difficult to respond to
changing requirements

✓ No working software is produced
until late during the life cycle.

✓ Some problems in requirements,
design and coding might be not
discovered until system testing

✓ Defects cost is high

26

V-MODEL

User
requirements

System
requirements

Global design

Detailed design

Implementation

Component
text execution

Integration test
execution

System test
execution

Acceptance
test execution

Preparation
Integration test

Preparation
System test

Preparation
Acceptance test

27

V-model

✓ Time spent early in the software
production cycle can lead to
greater economy at later stages

✓ Easily identifiable milestones and
deliverables

✓ Testing activities like planning, test
designing happens well before
coding. This saves a lot of time

✓ Proactive defect tracking – that is
defects are found at early stages
when they are introduced

✓ Rigid and Inflexible: difficult to
respond to changing requirements

✓ If any changes happen mid way, not
only the requirements documents but
also the test Documentation needs to
be updated

✓ No working software is produced
until late during the life cycle.

28

Iterative model

30

SCRUM is an iterative and incremental agile software development framework for
managing product development.

SCRUM

31

SCRUM

✓ Great emphasis on team work

✓ Team learns and contributes
throughout the process, team
becomes autonomous and strives for
excellence

✓ Iterative model leading to a delivery
every sprint

✓ Frequent and late changes
welcoming

✓ Creates an open environment and
encourages immediate feedback

✓ The basic premise that the team is
committed to the project. If the
team is not committed then process
collapses

✓ The size of the team is restricted due
to the involvement of all team
members

✓ Reliance on experience

✓ The management's comfort level in
delegation of tasks

Practice to lesson 2:
1. Try to find bugs on next sites and describe them in Jira -

“Website bugs (lection 2)” project (see next slide for the
details):
a. http://www.tort.ua/
b. http://zoocomplex.com.ua/

Please, send me email when you will report all found bugs
with their numbers.

1. Additional hometask:
Create checklist (based on different test types) in excel/txt file and send it via
email - choose one point from the list (8 points in list):

b. window
c. pen
d. stapler
e. elevator
f. control desk

Jira using:
1. Open site
2. Log in (choose the project - web sites)
3. Click on Create button
4. Choose next fields:
⬜ Issue type: bug
⬜ Summary (add summary to your bug)
⬜ Description (add next info: Created by; Environment description;

Preconditions (if needed); Step to reproduce; Actual Result; Expected Result;
Additional info(if needed))

⬜ set priority (as severity)

7. Files (add some screenshots if needed)

8. Click on Create button

/!\Note: don’t forget to add your name to the created issue

LINK to Jira tool: https://group7-skillup.atlassian.net/secure/Dashboard.jspa

login: testSkillup@i.ua
password: QAskillup17

Thank you!

