

Семинар NAS101 | 2006 | MSC.Software Corporation Постоянное представительство в СНГ Москва

Раздел 3

Управление решением

Управление решением

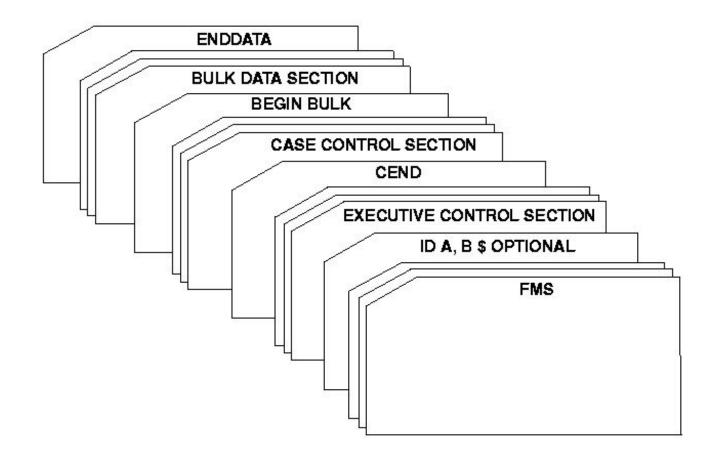
-	
• Входной файл MSC Nastran	6
• Расположение разделяющих записей	10
• Формат входного файла	11
• Секция Executive Control	12
• Некоторые операторы секции Executive Control	13
• Описание DMAP	14
• Последовательности решений	16
• Структурированные последовательности решений	17
• Жесткие последовательности решений	18
• Секция Case Control	19

Управление решением (продолжение)

• Выбор наборов данных	20
• Выбор статической нагрузки	21
• Выбор температурной нагрузки	22
• Выбор начальной температуры	23
• Выбор граничных условий	24
• Многовариантное нагружение	25
• Пример секции Case Control	26
• Заголовки	30
• Температурные нагрузки	31

Управление решением (продолжение)

• Записи Bulk Data, определяющие температуру	33
• Температурные свойства материала	35
• Записи температурной нагрузки	36
• Гравитационная нагрузка	37
• Пример	40
• Выбор выходных данных	42


Управление решением (продолжение)

• Выбор выходных данных для элементов	45
• Выбор выходных данных для элементов	46
• Использование запроса GPFORCE	47
• Пример секции Case Control	48
• Использование команды SET	49
• Форматный вывод результатов	51
• Вывод с использованием SORT1	52
• Вывод с использованием SORT2	53

Входной файл MSC Nastran

- Формат входного файла подробно описан в MSC Nastran Quick Reference Guide
- Ниже приводится общее описание входного файла с описанием его секций и особенностей их использования для управления ходом решения

Входной файл MSC Nastran (продолжение)

Входной файл MSC Nastran (продолжение)

• Секция FILE MANAGEMENT (FMS) - необязательная:

- Оператор NASTRAN (необязательный, применяется для задания глобальных настроек текущего запуска);
- Размещение файлов, контроль рестартов, работа с базой данных;
- Основное назначение FMS сделать операционную систему "невидимой" для пользователя;

Секция EXECUTIVE CONTROL:

• Тип решения, предоставляемое время, модификации и системная диагностика;

Секция CASE CONTROL:

• Запрос выходных данных и выбор из секции BULK DATA вариантов нагрузки и закрепления;

• Секция BULK DATA:

• Описание модели и условий решения.

Входной файл MSC Nastran (продолжение)

- MSC Nastran разработан для запуска в командном режиме.
- Процесс анализа описывается во входном файле следующим образом:
 - 1. Секция FILE MANAGEMENT (необязательная);
 - 2. Секция EXECUTIVE CONTROL;
 - 3. Секция CASE CONTROL;
 - 4. Секция BULK DATA.
- Подробности можно найти в MSC Nastran Installation and Operation Guide

Расположение разделяющих записей

Разделяющие записи во входном файле отделяют различные секции файла друг от друга

CEND Конец секции EXECUTIVE CONTROL,

начало секции CASE CONTROL

BEGIN BUI K Конец секции CASE CONTROL и начало секции

BULK DATA

ENDDATA Последняя запись во ВСЕХ входных файлах

MSC Nastran

Примечание: Все эти записи должны начинаться с первой колонки.

Формат входного файла

Секция FILE MANAGEMENT:

• Использует свободный формат (смотри MSC Nastran User's Manual)

Секции CASE CONTROL и EXECUTIVE CONTROL:

• Использует свободный формат (в пределах колонок 1-72). Данные могут начинаться с любой позиции и разделяются запятыми или пробелами.

Секция BULK DATA:

- Существует три возможных варианта формата (подробнее эти форматы будут рассмотрены ниже):
 - Свободный формат
 - Малый формат
 - Большой формат

Секция Executive Control

- Секция EXECUTIVE CONTROL является первой обязательной группой операторов в любом входном файле MSC Nastran.
- Основными функциями секции EXECUTIVE CONTROL являются:
 - Описание типа анализа (последовательности решения);
 - Определение основных условий работы, таких как:
 - Максимальное время;
 - Системная диагностика;
 - Использование подпрограмм на языке DMAP.
- Полное описание операторов секции EXECUTIVE CONTROL приведено в третьем разделе книги MSC Nastran Quick Reference Guide.

Некоторые операторы секции **Executive Control**

- SOL K обязательная запись, где K номер или имя типа анализа
- CEND обязательная запись последняя запись этой секции
- DIAG J необязательная запись запрашивает специальную диагностику, например:
 - DIAG 8 - печать общих данных о сгенерированных матрицах
 - DIAG 14 - печать команд DMAP – рекомендуется использовать вместе с ALTER.
 - DIAG 56 - вывод значений классификаторов в "f04" в том порядке, как они заданы, плюс вывод всех DMAP инструкций (номер линии и SubDMAP) в порядке их выполнения в "f04"

Описание DMAP

- Исполняющая система MSC Nastran использует внутренний язык, ориентированный на работу с блоками данных, называемый **DMAP** (Direct Matrix Abstraction Programming).
- Все расчетные последовательности MSC Nastran написаны с использованием DMAP
- Этот язык программирования полностью открыт для пользователей
- DMAP:
 - Осуществляет операции преобразования входных данных в матрицы и/или таблицы
 - Выполняет матричные операции
 - Преобразует матричное решение в выходные данные
 - Печатает решение (и/или другую требуемую информацию)

Описание DMAP

- Каждое решение в MSC Nastran составляется из последовательности операторов языка DMAP
- Последовательность выполнения этих операторов зависит от выбранного типа решения (SOL K)
- Каждое решение (SOL) содержит до нескольких тысяч операторов DMAP, и их число зависит от типа анализа
- Любая встроенная последовательность решения может быть изменена пользователем с помощью так называемых альтеров (ALTER)
- Измененные последовательности решения могут быть написаны и сохранены для дальнейшего использования
- Для более подробной информации смотри MSC Nastran DMAP Programs Guide

Последовательности решений

- В MSC Nastran существуют два вида последовательностей решения:
 - Структурированные последовательности решений (SSS):
 - Являются рекомендуемыми для выполнения расчетов
 - Используют базу данных для хранения и получения данных
 - Поддерживают рестарты
 - В отличие от жестких последовательностей решения, они содержат самые последние обновления и новые возможности
 - Старый жесткий формат более не поддерживается

Структурированные последовательности решений

SOL Number	SOL Name	Description
101	SESTATIC	Statics with Options: Linear Steady State Heat Transfer Alternate Reduction Inertia Relief Design Sensitivity - Statics
103	SEMODES	Normal Modes with Option: Design Sensitivity - Modes
105	SEBUCKL	Buckling with options: Static Analysis Alternate Reduction Inertia Relief Design Sensitivity - Buckling
106	NLSTATIC	Nonlinear or Linear Statics
107	SEDCEIG	Direct Complex Eigenvalues
108	SEDFREQ	Direct Frequency Response
109	SEDTRAN	Direct Transient Response
110	SEMCEIG	Modal Complex Eigenvalues
111	SEMFREQ	Modal Frequency Response
112	SEMTRAN	Modal Transient Response
114	CYCSTATX	Cyclic Statics with Option: Alternate Reduction
115	CYCMODE	Cyclic Normal Modes
116	CYCBUCKL	Cyclic Buckling
118	CYCFREQ	Cyclic Direct Frequency Response
129	NLTRAN	Nonlinear or Linear Transient Response
144	AESTAT	Static Aeroelastic Response

SOL Number	SOL Name	Description
145	SEFLUTTR	Aerodynamic Flutter
146	SEAERO	Aeroelastic Response
153	NLSCSH	Static Structural and/or Steady State Heat Transfer Analysis with Options: Linear or Nonlinear Analysis
159	NLTCSH	Transient Structural and/or Transient Heat Transfer Analysis with Options: Linear or Nonlinear Analysis
190	DBTRANS	Database Transfer, "Output Description" on page 340 of the MSC.Nastran Reference Manual.
200	DESOPT	Design Optimization
400	NONLIN	Nonlinear static and transient analysis

Секция Case Control

- Секция Case Control всегда следует за секцией Executive Control и предшествует секции Bulk Data. Требуется при каждом запуске.
- К первичным функциям секции Case Control относятся:
 - Выбор наборов данных в секции BULK DATA, которые используются при анализе
 - Запрос на вывод результатов
 - Определение вариантов закрепления и нагружения (Subcases).
- Полный список операторов данной секции для каждой последовательности решения приведен в разделе 4 MSC.Nastran Quick Reference Guide.
- Начиная с версии 2005 в картах секции Case Control выполняется полная проверка синтаксиса. Предыдущие версии проверяли только первые четыре позиции. Допустимы короткие формы записи команд (например, Disp для Displacement), если они отвечают правилам сокращения.

Выбор наборов данных

- Концепция наборов данных позволяет пользователю определять любое количество различных вариантов нагрузок и граничных условий в секции BULK DATA
- Указание, какие из наборов данных надо включить в данный анализ, задается командой выбора данных в секции **CASE CONTROL:**

DATA_SET_NAME = SID

- Наборы данных, выбираемые таким способом могут включать нагрузки, граничные условия и поля температур.
- **Примечание:** Любые записи Bulk Data которые могут выбираться командами секции Case Control, но не были выбраны, в данном запуске будут проигнорированы.

Выбор статической нагрузки

- Варианты статической нагрузки выбираются командой LOAD секции Case Control:
- Форма записи:

LOAD = i

где і – вариант прикладываемой нагрузки (смотри поле SID в записи секции Bulk Data, относящейся к нагрузке)

- Все записи нагрузки с SID і будут приложены совместно (примечание: запись GRAV должна иметь уникальный SID)
- Пример:

LOAD = 1

Будут приложены все нагрузки в записях которых SID=1

Выбор данных температурной нагрузки

- Температурные нагрузки прикладываются (выбираются) с использованием команды секции Case Control – TEMP(LOAD)
- Форма записи:

$$TEMP(LOAD) = j$$

где ј указывает на идентификатор (ID) записей секции Bulk Data, которые определяют температурное поле, прикладываемое к модели (например TEMP, TEMPD, TEMPP1, TEMPRB)

Выбор начальной температуры

- Начальная температура определяется использованием либо команды TEMP(INIT) секции Case Control, либо полем TREF в записи свойств материала
- При использовании TEMP(INIT) она должна быть задана выше первого subcase
- Форма записи:

$$TEMP(INIT) = j$$

где ј указывает на ID записей секции Bulk Data, которые определяют начальную температуру модели (например: TEMP, TEMPD, TEMPP1, TEMPRB)

- Температура, <u>используемая для расчета нагрузки:</u>
- TEMP(LOAD) TEMP(INIT)

Или поле TREF записи материала

Выбор граничных условий

- Граничные условия, которые будут прикладываться, выбираются командами Case Control SPC и MPC
- SPC выбор набора граничных условий для одиночных узлов:
 - SPC ограничение степеней свободы перемещений и вращений для отдельных узлов
 - Задаются записями SPC и SPC1 секции Bulk Data
- МРС Выбор набора граничных условий для группы узлов:
 - MPC это граничные условия задаваемые уравнением, связывающие движение выбранных степеней свободы относительно других степеней свободы в модели
 - MPC задаются записью MPC секции Bulk Data

Многовариантное нагружение

- Команда SUBCASE определяет каждую уникальную комбинацию установленных нагрузок и граничных условий.
- Форма записи:

SUBCASE i

где і – идентификатор варианта (целое число).

- В каждом SUBCASE могут выбираться различные граничные условия, нагрузки и выходные данные
- Номера (i) SUBCASE должны быть указаны в возрастающем порядке, но не обязательно по порядку, (т.е. например, могут быть номера 1, 14, 31 и 50)

Пример секции Case Control

Предположим, что мы имеем два варианта условий нагружения (LOADs 100 и 200) с различными вариантами граничных условий (SPC 110 и 210 соответственно). Приведенная ниже секция определяет для MSC Nastran какие комбинации нагрузок и ГУ необходимо рассчитать и какие требуются результаты.

Пример секции Case Control (продолжение)

```
CEND
SUBCASE 10
LABEL = Условие нагружения 1 – приложить нагрузку 100 и граничные условия SPC 110
LOAD = 100
SPC = 110
DISP = ALL
SUBCASE 20
LABEL = Условие нагружения 2 – приложить нагрузку 200 и граничные условия SPC 210
LOAD = 200
SPC = 210
DISP = ALL
BEGIN BULK
```

Пример секции Case Control (продолжение)

- На предыдущем слайде секция Case Control задает две комбинации нагружения и ГУ, каждая из которых определяется отдельной командой SUBCASE
- Каждый SUBCASE содержит запросы по нагрузке и граничным условиям, плюс любые запросы результатов
- Если требуется выполнить большое количество комбинаций установленных нагрузок и граничных условий, то секция Case Control может стать очень длинной
- Для того, чтобы этого избежать необходимо перед первым SUBCASE поместить запросы, используемые по умолчанию для всех SUBCASE (однако, эти запросы могут быть изменены в рамках любого из них)
- Ниже приведен пример секции Case Control с использованием этого подхода:

Пример секции Case Control (продолжение)

```
$ запросы Case Control, используемые по умолчанию
LOAD = 100
SPC = 110
DISP = ALL
$ конец списка запросов, используемых по умолчанию
SUBCASE 10
LABEL = условия нагружения 1 – приложить нагрузку 100 и граничные условия SPC 110
$
SUBCASE 20
```

LABEL = условия нагружения 2 – приложить нагрузку 200 и граничные условия SPC 210

LOAD = 200

BEGIN BULK

SPC = 210

CEND

Заголовки

- <u>Заголовки</u> необязательны, но рекомендуются для идентификации записей (в файле результатов F06).
 - **TITLE** Определяет текст, который будет печататься на каждой выводимой странице в первой строке.
 - **SUBTITLE** Определяет текст, который будет выводиться во второй строке каждой страницы.
 - LABEL Определяет текст, который будет печататься в третьей строке каждой выводимой страницы.

• Пример:

TITLE = тестовый запуск - workshop 1 SUBTITLE = статическая нагрузка, действующая на ферму LABEL = демонстрация для семинара NAS 101

Температурные нагрузки

- Для включения температурного воздействия в анализ используются несколько типов определяющих записей. Выбор необходимой записи зависит от того, к чему будет приложена температурная нагрузка:
 - для задания температуры в узлах используются записи TEMP, TEMPD
 - для задания температурного поля на элементы ROD, BAR, BEAM, BEND, CONROD, TUBE используется запись TEMPRB
 - запись ТЕМРР1 используется для задания температурного поля на оболочечные элементы
- Для включения эффектов температурного воздействия в анализ пользователь должен задать исходную температуру {TREF или **TEMP(INIT)**} и коэффициент линейного температурного расширения (α) в записи материала. Также в секцию Case Control должен быть включен запрос TEMP(LOAD)=SID

Температурные нагрузки (продолжение)

- Если температурные эффекты были запрошены, то температурное поле должно быть задано на всех элементах (узлах). Если требуется определить результаты температурного воздействия только на части модели, то остальные элементы могут иметь:
 - ссылку на запись материала под другим MID, с такими же свойствами, как и основной материал, но с α = 0.0
 - ссылку на запись материала под другим MID, с такими же свойствами, как и основной материал, но TREF = прикладываемой температурной нагрузке (т.е., $\Delta T = 0$)
- Смотри MSC Nastran Linear Static Analysis User's Guide и Quick Reference Guide (QRG) для более подробного описания температурного нагружения

Записи Bulk Data, определяющие температуру

Оператор для задания температуры в узлах

TEMP

Задает температуру в узловых точках для определения температурного нагружения, свойств материала, зависящих от температуры и получения напряжений

Формат:

1	2	3	4	5	6	7	8	9	10	
TEMP	SD	G1	TI	G2	T2	G3	Т3			1

Пример:

	_	_			_			
TEMP	3	54	3162	49	219.8	1		
27.22.23	552.00	200000	3210200	1000-0	T03707000		l .	

Поле Содержание SD Идентификационный номер варианта температуры (целое > 0) Gi Идентификационный номер узловой точки (целое > 0) Τi Температура (веществ.)

Записи Bulk Data, определяющие температуру (продолжение)

TEMPD

Определяет температуру во всех узловых точках модели, в которых не была задана температура с помощью записи TEMP.

Формат:

1	2	3	4	5	6	7	8	9	10
TEMPD	SID1	T1	SID2	T2	SID3	Т3	SID4	T4	

Пример:

200	8	00	000 300	77	550	000	36 576	
TEMPD	1	216.3						

Температурные свойства материала

Таблица 2.1 – Описание свойств элементов модели

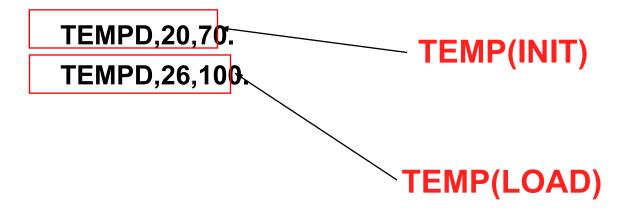

	Материал	Тип элемента и попер. сечения
Верхние элементы 1, 2, 3, 4	Сталь	Веат, сечение В
Нижние элементы 9, 10, 11	Сталь	Веат, сечение А
Внутренние элементы 5, 6, 7, 8	Сосна	Rod, площадь 5.2 in ²

Таблица 2.2 – Описание свойств материалов

Материал	Сталь	Сосна
Модуль упругости	2.90E+07 psi	1.76E+07 psi
Коэффициент Пуассона	0.32	
Массовая плотность	7.349E-04 lb sec ² / in ⁴	5.435E-05 lb sec ² / in ⁴
Коэффициент температурного расширения	6.78E-06 in/deg.F	3.00E-06 in/deg.F
Начальная температура	72 deg.F	72 deg.F
Максимальные напряжения на растяжение	24000 psi	1900 psi
Максимальные напряжения на сжатие	24000 psi	1900 psi
Максимальные напряжения на сдвиг	24000 psi	
Гравитационное ускорение	386.4 in/sec ²	386.4 in/sec ²

Записи температурной нагрузки

- В предыдущем примере, в записи материала MAT1 уже был. задан коэффициент температурного расширения, таким образом необходимо задать только температуры
- Хотя можно использовать запись TREF в записи материала, мы будем использовать запись TEMP(INIT) для задания начальной температуры

Гравитационная нагрузка

- Для задания гравитационной нагрузки используется запись GRAV секции Bulk Data.
- Запись GRAV используется для определения направления и величины линейного постоянного гравитационного вектора ускорения в любой необходимой системе координат
- Запись GRAV может использоваться для приложения к модели ускорений
- Результирующая нагрузка вычисляется с использованием вектора гравитации и матрицы масс. (Поэтому массовые свойства модели нужно задавать очень
- осторожно, используя правильные единицы измерения)
- Данная нагрузка не может быть приложена в скалярной точке, так как она действует на всю модель

Гравитационная нагрузка (продолжение)

1	2	3	4	5	6	7	8	9	10
GRAV	SID	CID	G	N1	N2	N3			
GRAV	14		13.0	1.0		2.0			

Вектор гравитации $\vec{g} = g(N1, N2, N3)$

<u>Поле</u> <u>Содержание</u>

- SID
 Идентификационный номер варианта нагружения (целое > 0)
- CID Идентификационный номер координатной системы (целое > 0)
- G Масштабный коэффициент вектора гравитации (веществ.)
- N1,N2,N3 Компоненты вектора гравитационной нагрузки (обязательно, хотя бы одна)
- ПРИМЕЧАНИЕ: SID должен быть уникальным номером

Карта ACCEL – ускорение

1	2	3	4	5	6	7	8	9	10
ACCEL	SID	CID	N1	N2	N3	DIR			
	LOC1	VAL1	LOC2	VAL2	Continues in Groups of 2				

• Карта ACCEL позволяет задать переменные ускорения в модели

Поле Содержание

- SID Идентификационный номер варианта нагружения (целое > 0)
- CID Идентификационный номер координатной системы (целое ≥ 0)
- Ni Компоненты вектора ускорения в системе координат CID. (Веществ.; как минимум один Ni 0.0)
- DIR Направляющая компонента изменения ускорения. (Симв.; X, Y, или Z)
- LOCi Положение вдоль направления DIR в системе координат CID для задания масштабного множителя нагрузки. (Веществ.)
- VALi Масштабный множитель нагрузки ассоциированный с положением LOCi. (Веществ.)

Карта ACCEL1 – ускорение

1	2	3	4	5	6	7	8	9	10
ACCEL1	SID	CID	A	N1	N2	N3			
	GRIDID1	GRIDID2	-etc						

• Карта ACCEL1 позволяет задать ускорение в модели для отдельных узловых точек

Поле Содержание

- SID Идентификационный номер варианта нагружения (целое > 0)
- CID Идентификационный номер координатной системы (целое ≥ 0)
- А Масштабный множитель вектора ускорения. (Веществ.)
- Ni Компоненты вектора ускорения в системе координат CID.
 (Веществ.; как минимум один Ni 0.0) ≠
- GRIDIDi Список ID одной или более узловых точек. Ключевые слова "THRU" и "BY" могут быть использованы для формирования списка. (целое > 0)

Гравитационная нагрузка (продолжение)

• Следующая запись будет использоваться для определения гравитации в нашем примере (заметим, что запись материала MAT1 уже содержит массовую плотность)

GRAV,30,,386.0886,0.,-1.,0.

Пример

- Продолжение предыдущего примера
- В этом примере будет добавлено 2 дополнительных условия нагружения:
 - SUBCASE 20 = температурная нагрузка
 - начальная температура = 70 градусов
 - температурная нагрузка = 100 градусов
 - SUBCASE 30 = гравитационная нагрузка
 - прилагается нагрузка 1-g (386.0886 дюйм/с²) в направлении противоположном оси Y

Изменение во входном файле для данного примера

```
TITLE = GARAGE ROOF FRAME
                                         SUBCASE 30
SUBTITLE = WOOD AND STEEL MEMBERS
                                            SUBTITLE = GRAVITY LOAD
SUBCASE 1
                                            LOAD = 30
   SUBTITLE=TRUSS LBCS
                                            DISPLACEMENT = ALL
   LOAD = 1
                                            SPCFORCES = ALL
   DISPLACEMENT = ALL
   SPCFORCES = ALL
                                            STRESS = ALL
   STRESS = ALL
                                            SPC = 10
   SPC = 10
                                         BEGIN BULK
SUBCASE 20
                                         TEMPD, 20, 70.
   SUBTITLE = THERMAL LOAD
                                         TEMPD, 26, 100.
   TEMP(INIT) = 20
   TEMP(LOAD) = 26
                                         GRAV, 30,,386.0886,0.,-1.,0.
   DISPLACEMENT = ALL
                                         $ The rest of the input file is
   SPCFORCES = ALL
                                         $ unchanged from workshop 2
   STRESS = ALL
   SPC = 10
```

MSC SimEnterprise™

Новые записи Bulk Data

Выбор выходных данных

Запись ЕСНО:

ЕСНО Выбор опций печати секции Bulk Data.

• Опции включают в себя:

SORT Печать только отсортированных данных (по умолчанию).

UNSORT Печать только не отсортированных данных.

ВОТН Печать и отсортированных и не отсортированных данных.

NONE Выключение печати данных.

PUNCH Печать данных в отдельный вспомогательный файл РСН.

• Пример:

ECHO = SORT, PUNCH

Выбор выходных данных (продолжение)

- По умолчанию MSC Nastran не делает вывода результатов, поэтому нужно формировать запросы необходимых результатов
- Делая запросы, можно использовать некоторые опции, определяющие представление результатов. Наиболее часто используемые это: PRINT, PLOT, PUNCH
 - PRINT используется по умолчанию и производит печать результатов в '.f06' файл
 - PUNCH обеспечивает вывод результатов в '.pch' файл, используя 'punch' формат (ширина строки 80 символов)
 - PLOT программа вычислит запрошенные результаты, однако печать в форматный файл производиться не будет. Эта опция обычно используется, когда пользователь желает просмотреть результаты используя программу обработки данных (например MSC Patran). В этом случае результаты записываются только в бинарную базу данных (файлы .XDB или .OP2)
- При использовании опций они берутся в скобки сразу после описания команды

Выбор выходных данных (продолжение)

- Запрашиваемый вывод результатов может быть выполнен как для определенного набора (SET), так и для всей модели
- Примеры:

DISP = ALL вычисляет и печатает результаты перемещений для всех узловых точек модели

DISP(PLOT) = ALL вычисляет, но не печатает результаты перемещений для всех узловых точек модели

DISP = 1вычисляет и печатает результаты перемещений для группы 1 (SET 1) узловых точек модели (SET 1 должен быть определен заранее)

Выбор выходных данных для элементов

[•] Операторы запроса результатов по элементам:

ELFORCE или FORCE запрос на вывод сил, которые были рассчитаны и записаны для группы элементов.

ELSTRESS или STRESS запрос на вывод напряжений для группы элементов.

STRAIN запрос на вывод деформации

для группы элементов.

ESE запрос на вывод энергии деформации

для группы элементов.

ELSUM запрос на вывод общей информации

о свойствах элементов модели.

Выбор выходных данных для узлов

- DISPLACEMENT – запрос на вывод перемещений для группы узловых точек
- DISPLACEMENT(PLOT) запрос подобный предыдущему, но в данном случае печать результатов проводиться не будет. Данная форма команды необходима при постпроцессоров. При печатном использовании графиков или данных в ней нет необходимости. выводе
- SPCFORCES запрос на вывод силы реакций для набора узлов с граничными условиями типа SPC.
- OLOAD запрашивает печать внешних сил для статического анализа.
- GPFORCE запрашивает баланс сил в заданной узловой точке.

Использование запроса GPFORCE

- Данный запрос генерирует таблицу баланса сил для выбранных узловых точек
- Это полезно для определения путей передачи сил, влияния приложенной нагрузки на поведение элементов, и эффекта от действия начальных температурных деформаций.
- Содержание таблицы баланса сил включает в себя:
 - Приложенные нагрузки (силы, моменты и т.д.)
 - Силы реакций в узлах с ГУ
 - Силы, передаваемые через МРС (ГУ, задаваемые уравнением)
 - Силы в узлах от элементов

Пример секции Case Control

• Ниже приведен пример секции Case Control:

```
CEND
```

TITLE = использование запроса GPFORCE

TEMP(LOAD) = 100 \$ вариант температурной нагрузки 100

SPC = 200 \$ вариант граничных условий 200

LOAD = 120 \$ приложение варианта статической нагрузки 120

DISP = ALL \$ запрос вывода перемещений для всех узлов

FORCE = ALL \$ запрос вывода сил для всех элементов

STRESS = ALL \$ запрос вывода напряжений для всех элементов

GPFORCE = ALL \$ запрос баланса сил для всех узлов

BEGIN BULK \$ конец секции Case Control

Использование команды SET

- Запросы выходных данных могут указывать на все узлы или элементы, или на их наборы
- Эти наборы задаются командой SET
- SET Определяет совокупность номеров узловых точек или номеров элементов для использования в запросах на вывод. Используется для получения вывода результатов для части модели.

• Пример:

```
Set 1 = 9,11,13,15
FORCE = 1
              $ запрос вывода сил для элементов 9,11,13,15
DISP = ALL
              $ запрос вывода перемещений для всех узловых точек
SET 99 = 14,32
                  $ запрос на вывод баланса сил для узлов 14, 32
GPFORCE = 99
```

Внимание!

- Для графической постпроцессорной обработки (независимо от используемых программ) необходимо включить соответствующие управляющие команды в секцию CASE CONTROL.
- Например, для отображения в постпроцессоре перемещений, секция CASE CONTROL должна содержать управляющую запись

DISP=N

или

DISP(PLOT)=N

• Это обеспечит вывод перемещений для набора N в бинарный файл для графического постпроцессора.

Форматный вывод результатов

- Существуют два формата, используемых для вывода результатов:
 - **SORT1** Результаты анализа представляются, как табличный список узловых точек для каждого варианта (применяется по умолчанию для статического анализа).
 - SORT2 Результаты анализа представляются, как табличный список для каждой узловой точки или элемента. Каждый узел или элемент печатается на новой странице.
- Включение формата SORT2 в каком-либо одном запросе на вывод результатов приведет к тому, что все остальные результаты будут распечатаны в формате SORT2.
- Внимание: Запрос вывода SORT2 может выдать чрезмерно большое число страниц с результатами. SORT2 обычно используется для печати результатов динамического анализа.

Вывод с использованием SORT1

SORT1 FORMAT

EXAMPLE OF SORT OUTPUT
SORT IS THE DEFAULT OUTPUT FORMAT

AUGUST 16, 1994 MSC/NASTRAN 5/31/94 PAGE

DISPLACEMENT VECTOR

POINT ID.	TYPE	Tl	T2	тЗ	Rl	R2	R3
1	G	0.0	0.0	0.0	0.0	0.0	0.0
2	G	2.758621E-02	0.0	0.0	0.0	0.0	0.0
3	G	5.517241E-02	0.0	0.0	0.0	0.0	0.0
4	G	8.275862E-02	0.0	0.0	0.0	0.0	0.0
5	G	1 103448E-01	0 0	0 0	0 0	0 0	0 0

EXAMPLE OF SORT1 CUTPUT
SORT1 IS THE DEFAULT CUTPUT FORMAT

AUGUST 16, 1994 MSC/NASTRAN 5/31/94 PAGE 11

DISPLACEMENT VECTOR

POINT ID.	TYPE	rl	т2	тЗ	Rl	R2	R3
1	G	0.0	0.0	0.0	0.0	0.0	0.0
2	G	0.0	0.0	0.0	4.563709E-02	0.0	0.0
3	G	0.0	0.0	0.0	9.127419E-02	0.0	0.0
4	G	0.0	0.0	0.0	1.369113E-01	0.0	0.0
5	G	0.0	0.0	0.0	1.825484E-01	0.0	0.0

Вывод с использованием SORT2

SORT2 FORMAT

SORT2 SELECT POINT-ID =		SP (SORT2)=ALL,	FORCE (S			MSC/NASTRAN 5/	31/94 PAGE	10		
POINT-ID -	9. ±		DIS	PTAC	EMENT	VECTOR				
			<i>D</i> 1 0	LING	LMLHI	LLGIOR				
SUBCASE	TYPE	Tl		T2	т3	R1	R2			R3
1	G	0.0	0.0		0.0	0.0	0.0		0.0	
2	G	0.0	0.0		0.0	0.0	0.0		0.0	
EXAMPLE OF SORT2				AUGUST		MSC/NASTRAN 5/	31/94 PAGE	11		
SORT2 SELECT	ION IS DI	SP (SORT2)=ALL,	FORCE (S	ORT2)=AL	L					
POINT-ID =	2									
			DIS	PLAC	EMENT	VECTOR				
SUBCASE	TYPE	Tl		т2	т3	R1	R2		monto j	R3
1	G	2.758621E-02	0.0		0.0	0.0	0.0		0.0	
2	G	0.0	0.0		0.0	4.563709E-	0.0		0.0	
EXAMPLE OF SORT2	OUTPUT			AUGUST	17, 1994	MSC/NASTRAN 5/	31/94 PAGE	12		
SORT2 SELECT	ION IS DI	SP (SORT2)=ALL,	FORCE (S	ORT2)=AL	L					
POINT-ID =	3									
			DIS	PLAC	EMENT	VECTOR				
SUBCASE	TYPE	Tl		т2	13	Rl	R2		1	R3
1	G	5.517241E-02	0.0		0.0	0.0	0.0		0.0	
2	G	0.0	0.0		0.0	9.127419E-	0.0		0.0	

