Раздел 7.2

Упражнения по расчету отклика на аэродинамическое воздействие

Запустить модель ha146a.bdf, описанную в NAS111 и Aeroelastic user guide. Провести изменения, позволяющие прочитать результаты в Patran.

- Измените вид выходных данных, введя параметр
- DISP = ALL (таким образом мы теперь сможем выбрать любой узел для расчета отклика)
- Добавить param,post,0 таким образом мы можем прочитать полученные данные с помощью Patran из файла XDB
- При импорте результатов из файла XDB, установите опцию, позволяющую импортировать результаты расчета вращательных составляющих, так как мы использовали RZ SPCforce, как реакцию на вращательный момент
- Постройте графики перемещений узла 10 и 11 в зависимости от времени, и реакцию SPC на силу RZ в узле 11 в зависимости от времени.
- Перемещения всей конструкции могут быть анимированы в зависимости от времени, но «упругая» составляющая отклика очень мала по сравнению с основным перемещением, поэтому она не различима. Использование графиков в Nastran и Patran может помочь визуализировать отклик когда имеются конструкционные ограничения. Ввод данных для графиков в Patran выполняется по передней и задней кромке конструкции.

Выбор вращательных составляющих

			O	oject: Result Entities 🕚
	Translation Parameters		м	ethod: I ocal ▼
	MSC.Nastran			
	Result Entities		C	ode: MSC.Nastran ——
	Translation Parameters		Т	voe: Structural
	Toloranoos		, i j	
	Division:	1.0E-8	St	udy:
	Numerical:	1.UE-4	A	/ailable Jobs
	Additional Deputta to be Asses		h	a146a
	Rotational Nodal Results	sea		
			1 mg	
			14	1
	Principal Directions		Jo	b Name
	Floment Results Positions:	Nodol -	F	ia146a
			Jo	b Description
		x		
	OK Defaults	Cancel		
				Select Results File
				Translation Parameter

Action:

Attach XDB 🔻

*

-

Здесь используется модель из упражнения 1 – рсчет статической аэроупругости, для расчета собственных частот и отклика на импульсную нагрузку.

• Изменить в example1a_trim.bdf тип решения на SOL103, удалить SOL144 из раздела данных Case Control и добавить карту METHOD. Добавить карту EIGRL в Bulk Data, со значением параметра запрашивающим 10 тонов.

(<u>Примечание:</u> существующие данные для расчета SOL144 в Bulk Data могут быть оставлены, так как к ним нету обращения из Case Control)

Если у вас нету времени проделать все эти изменения, то для расчета запустите example5a_modes.bdf

• Исследуйте полученные тона в PATRAN

- Выполните расчет отклика на импульсную нагрузку на этой же модели, запустив файл example5a_resp.bdf – посмотрите как введены данные для переходного процесса и как определена область для расчета частотного отклика.
- <u>Примечание:</u> приложена импульсная нагрузка величиной 6000KN в течении 1е-6 сек, с обратной пульсацией в соответствии с сохранением нулевой скорости. Схема нагружения похожа на схему нагружения, примененную в упражнении ha146e, с приложением нагрузки в узел Grid 51
- Примем скорость полета равную 134 м/с, что соответствует М=0.39, q=11016 N/м2
- Необходимо, что бы период времени для расчета (1/ delta freq) был достаточным, что бы затухли нижние частоты, иначе будет ошибка при преобразовании Фурье.
- Прочитайте даные из файла xdb в новую базу данных PATRAN и наблюдайте измениния формы в зависимости от времени. Используйте опцию results/deformation для отображения отклика во времени. Используйте опцию results/graph при создании графика отклика для узла Grid 51 (точка приложения) и узла Grid 327 (точка на свободной кромке обшивки)

• Решение

• Собственные частоты (частоты в пустоте)

0	rbm
6.4	wing bend
18.1	local panel
19.9	tail bend
20.3	local panel
26.9	local panel
28.9	local panel
30.0	local panel
32.9	local panel
35.1	local panel

