Virtual Reality

CS60-520 Presentation

Instructor: Dr. Aggarwal

Student: Yang Gao

Semester: Winter 2004

Outline

- Introduction
- The history of VR
- Types of VR
- Technologies of VR
- Architecture of VR system
- Applications of VR
- Current problems & Future work
- Summary
- Reference

Introduction

What is Virtual Reality(VR)?
Virtual Reality refers to a high-end user interface that involves real-time simulation and interactions through multiple sensorial channels.

Introduction (Cont'd)

Why VR?

VR is able to immerse you in a computer-generated world of your own making: a room, a city, the interior of human body. With VR, you can explore any uncharted territory of the human imagination.

Brief History

- In 1950s, flight simulators were built by US Air Force to train student pilots.
- In 1965, a research program for computer graphics called "The Ultimate Display" was laid out.
- In 1988, commercial development of VR began.
- In 1991, first commercial entertainment VR system "Virtuality" was released.

Types of VR System

Windows on World(WoW)

- Also called Desktop VR.
- Using a conventional computer monitor to display the 3D virtual world.

Immersive VR

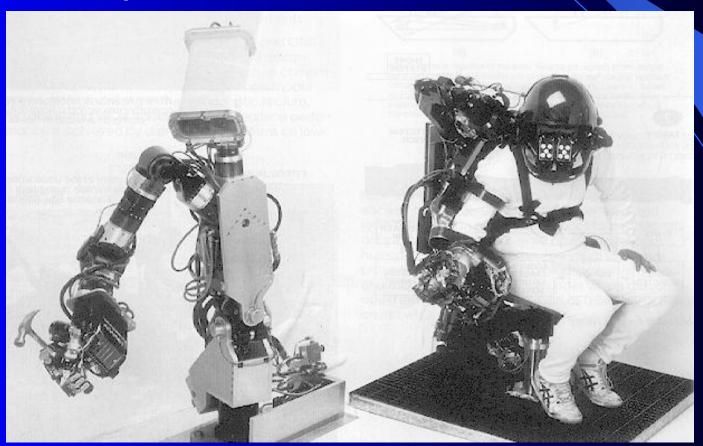
- Completely immerse the user's personal viewpoint inside the virtual 3D world.
- The user has no visual contact with the physical word.
- Often equipped with a Head Mounted Display (HMD).

Types of VR System(Cont'd)

Telepresence

- A variation of visualizing complete computer generated worlds.
- Links remote sensors in the real world with the senses of a human operator. The remote sensors might be located on a robot. Useful for performing operations in dangerous environments.

Types of VR System(Cont'd)


- Mixed Reality(Augmented Reality)
 - The seamless merging of real space and virtual space.
 - Integrate the computer-generated virtual objects into the physical world which become in a sense an equal part of our natural environment.

Distributed VR

 A simulated world runs on several computers which are connected over network and the people are able to interact in real time, sharing the same virtual world.

VR Examples (Cont'd)

Telepresence VR

VR Examples (Cont'd)

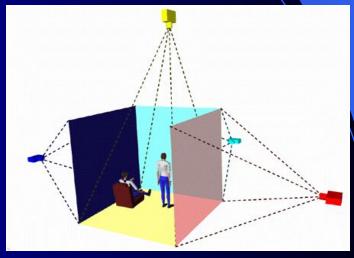
Augmented VR

VR Examples (Cont'd)


Distributed VR

Head-Mounted Display (HMD)

- A Helmet or a face mask providing the visual and auditory displays.
- Use LCD or CRT to display stereo images.
- May include built-in head-tracker and stereo headphones



- Binocular Omni-Orientation Monitor (BOOM)
 - Head-coupled stereoscopic display device.
 - Uses CRT to provide high-resolution display.
 - Convenient to use.
 - Fast and accurate built-in tracking.

- Cave Automatic Virtual Environment (CAVE)
 - Provides the illusion of immersion by projecting stereo images on the walls and floor of a room-sized cube.
 - A head tracking system continuously adjust the stereo projection to the current position of the leading viewer.

Data Glove

Outfitted with sensors on the fingers as well as an overall position/orientation tracking equipment.

Enables natural interaction with virtual objects by hand gesture

recognition.

- Control Devices
 - Control virtual objects in 3 dimensions.

Technologies of VR--Software

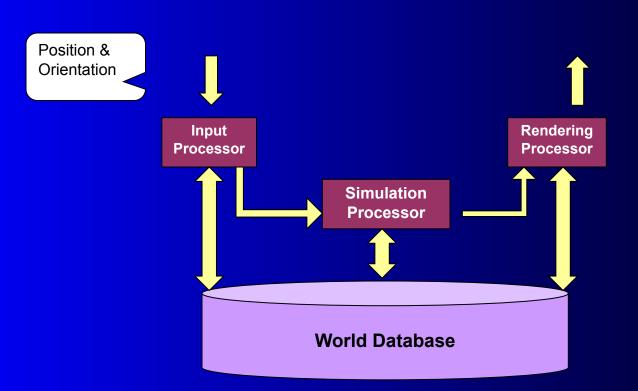
Toolkits

- Programming libraries.
- Provide function libraries (C & C++).

Authoring systems

 Complete programs with graphical interfaces for creating worlds without resorting to detailed programming.

Technologies of VR--Software


- Software packages available in market
 - Multiverse (Freeware)
 - Virtual Reality Studio (\$100)
 - Sense8 World Tool Kit (WTK) (over \$1000)
 - Autodesk Cyberspace Development kit (over \$1000)

Technologies of VR--Software

- VRML(Virtual Reality Modeling Language)
 - Standard language for interactive simulation within the World Wide Web.
 - Allows to create "virtual worlds" networked via the Internet and hyperlinked with the World Wide Web.
 - Aspects of virtual world display, interaction and internetworking can be specified using VRML without being dependent on special gear like HMD.
 - VR models can be viewed by Netscape or IE with a browser plug-in.

Architecture of VR System

Input Processor, Simulation Processor,
Rendering Processor and World Database.

visual, auditory, haptic, touch...

20

- Input Processor
 - Control the devices used to input information to the computer. The object is to get the coordinate data to the rest of the system with minimal lag time.
 - Keyboard, mouse, 3D position trackers, a voice recognition system, etc.

- Simulation Processor
 - Core of a VR system.
 - Takes the user inputs along with any tasks programmed into the world and determine the actions that will take place in the virtual world.

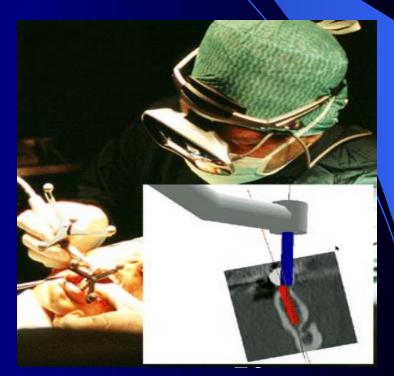
- Rendering Processor
 - Create the sensations that are output to the user.
 - Separate rendering processes are used for visual, auditory, haptic and other sensory systems. Each renderer take a description of the world stat from the simulation process or derive it directly from the World Database for each time step.

- World Database (World Description Files)
 - Store the objects that inhabit the world, scripts that describe actions of those objects.

Applications

Entertainment

- More vivid
- Move exciting
- More attractive



Applications (Cont'd)

Medicine

- Practice performing surgery.
- Perform surgery on a remote patient.
- Teach new skills in a safe, controlled environment.

Applications (Cont'd)

- Manufacturing
 - Easy to modify
 - Low cost
 - High efficient

27

Applications (Cont'd)

- Education & Training
 - Driving simulators.
 - Flight simulators.
 - Ship simulators.
 - Tank simulators.

Current problems & Future work

- Cybersickness / simulator sickness
- Low-fidelity
- Expensive
- Lack of integration between application packages
- High-fidelity system
- Cost-saving
- © Collaborative
- High-level contact between participants in distributed VR

Summary

- Visualization of complicated, large data is helpful for understanding and analysis.
- VR offers us a new way to interact with computer.
- VR enables us to experience the virtual world that is impossible in real world.
- VR is changing our life, eventually VR will increasingly become a part of our life.

Reference

- [1] What is Virtual Reality?, http://vr.isdale.com/WhatIsVR/frames/WhatIsVR4.1.html.
- [2] Augumented and Mixed Reality, http://www.mic.atr.co.jp/~poup/research/ar/.
- [3] Virtual Reality Applications, http://vresources.jump-gate.com/applications/applications.sht

 ml.
- [4] K.-P. Beier. Virtual Reality: A short Introduction. http://www-vrl.umich.edu/intro/
- [5] Franchi, J. Vertual Reality: An Overview. ERIC Digest, June 1995

Comments & Questions?