Степень с рациональным показателем

Преподаватель математики Московского колледжа (филиала) 177 Бисултанова Хеди Рамазановна г. Сургут

Цели и задачи урока

- 1) формирование знаний о степени с рациональным показателем и о свойствах степени с рациональным показателем.
- 2) формировать понятие о степени с рациональным показателем, изучить основные свойства степени с действительным и рациональным показателями;
- 3) способствовать выработке навыков решения задач, содержащих степень с рациональным показателем;
- 4) формировать умение находить значение степени с рациональным показателем, проводить по известным свойствам и правилам преобразование буквенных выражений,

«Пусть кто-нибудь попробует вычеркнуть из математики степени, и он увидит, что без них далеко не уедешь » М.В.Ломоносов

Повторение: «Решение систем иррациональных уравнений»

- 1. Что тебуется для полученных значений переменной при решении систем иррационалных уравнений? (проверка)
- 2. Способ, которым проводится проверка системы иррациональных уравнений. (подстановка)
- 3. Как называется знак корня? (радикал)
- 4. Сколько решений имеет уравнение $x^2 = a$, если a < 0? (ноль)
- 5. Как называется уравнение в которых под знаком корня содержится переменная? (иррациональное)
- 6. Сколько решений имеет уравнение х2 =0 (1 решение)
- 7. Корень какой степени существует из любого числа? (нечетной)
- 8. Сколько решений имеет уравнение х2 = а, если а >0 ? (2 решения)
- 9. Как называется корен системы уравнения, который получается в результате неравносильных преобразований? (посторонний)
- 10. Корень какой степени существует толко из неотрицательного числа? (четной)

Напомним свойства степеней с действительным показателем

Для любых чисел a, b и любых целых чисел m и п справедливы равенства:

Определение

Степенью числа a>0 с рациональным показателем $r=m\n$, где m — целое число, а n — натуральное (n>1), называется число

Итак, по определению: $u^{\frac{m}{n}} = \sqrt[m]{a^m}$

Степень числа 0 определена только для положительных показателей; по определению $0^{r} = 0$ для любого r > 0.

Замечание 1.

Из определения степени с рациональным показателем сразу следует, что для любого положительного а и любого рационального r число a^r положительно.

Замечание 2.

Любое рациональное число допускает различные записи его в виде дроби, поскольку для любого натурального к. Значение а^r также не зависит от формы записи рационального числа r. В самом деле, из свойств корней следует, что

$$a^{\frac{mk}{nk}} = \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

Бисултанова Х.Р.

Замечание 3.

Дифференцированные задания

Вариант 1

Вычислите:

а.	DDI-INCAINIC.	
	Уровень I	
	(-2)-2	- Ki
	$(-2)^{-2}$ $\sqrt{5^2-4^2}$	50 7
	$27^{\frac{-2}{3}}3^{2}$	
	$(6\sqrt{3})^3$	
	$\frac{5^{-1} \cdot 8^{\frac{-2}{3}}}{8^0}$	
	Уровень II	
	$\sqrt{18} \cdot \sqrt{2}$	8 8
	$\sqrt[3]{54 \cdot 32} - \sqrt{8 \cdot 162}$	20
0	$\frac{6}{\sqrt{2}}$	
	$(2-\sqrt{3})^2$	
	$-0,064^{\frac{1}{3}}0,49^{\frac{1}{2}}$	

Вариант2

Вычислите:

Уровень I	
(-3)-2	
$\sqrt{3^2 + 4^2}$	
4 2 64 3	
$(7\sqrt{2})^2$	
((29) ³) ⁰	
$16^{\frac{3}{4}} \cdot 2^{-4}$	
Уровень II	
$\sqrt{25} + \sqrt[5]{-32}$	
(-2√11) ²	
$\sqrt{36a^3} \cdot \sqrt{81a^5}$	
$при a = \frac{1}{2}$	
$(\sqrt{2}-3)(\sqrt{2}+3)$	23
$125^{\frac{1}{3}}16^{\frac{3}{4}}-36^{\frac{1}{2}}$	

ьисултанова Х.Р.

ВАРИАНТ 1 Уровень I	ответ	ВАРИАНТ 2 Уровень I	ответ	
(-2) -2	1/4	(-3) ⁻²	1/9	
$\sqrt{5^2 - 4^2}$	3	$\sqrt{3^2 + 4^2}$	5	
$27^{\frac{-2}{3}}3^{2}$	1	4 2 64 = 2	1	
(6√3)³	648 √3	(7 \sqrt{2})2	98	
$\frac{5^{-1} \cdot 8^{\frac{-2}{3}}}{8^{\circ}}$	1 20	$\frac{((29)^3)^0}{16^{\frac{3}{4}} \cdot 2^{-4}}$	2	
Уровень II	3 6	Уровень II		
√18 · √2	6	$\sqrt{25} + \sqrt[5]{-32}$	3	
3/54 ⋅ 32 − √8 ⋅ 162	-24	(-2√11)²	44	
$\frac{6}{\sqrt{2}}$	3 √2	$\sqrt{36a^3} \cdot \sqrt{81a^5}$ при $a = \frac{1}{2}$	3 3 8	
(2-√3) ²	7- 4 √3	$(\sqrt{2}-3)(\sqrt{2}+3)$	-7	
-0,064 ^{1/3} 0,49 ^{1/2}	-0,28	$125^{\frac{1}{3}}$ $16^{\frac{3}{4}}$ $-36^{\frac{1}{2}}$	34	

Бисултанова Х.Р.

Самостоятельная работа

Вариант №1

- 1. Вычислите $81^{\frac{1}{4}} \cdot 32^{\frac{2}{5}}$.

3) 36

4) 24

- 2. Вычислите $5(125)^{\frac{1}{3}} 2(243)^{\frac{1}{5}}$.
 - 1) 19

3) 28

4) 7

- 3. Упростите выражение $2c^2 \frac{2c^{\frac{3}{3}}}{2}$.
 - 1) $2c^{\frac{4}{3}}$

2) $c^{\frac{2}{3}}$

3) 0

4) 2c

- 4. Упростите выражение $\frac{8k^3 \cdot k^{3\frac{1}{2}}}{k^{-2\frac{1}{2}}}$.
 - 1) $8k^7$

2) 8k4

3) $8k^8$

- 4) $8k^9$
- 5. Найдите значение выражения $(0,2)^{-2p}:(0,2)^p$ при p=-1.
 - 1) 0,008

- 2) 0,0008
- 3) 0,08

- 4) 125
- 6. Значение выражения $\frac{\left(0,216^{\frac{4}{9}}\right)^{\frac{3}{2}}}{0,09^{\frac{3}{4}}\cdot0,027^{\frac{3}{6}}}$ принадлежит промежутку
 - 1) [0; 0,04] 2) (0,4; 1) 3) [3; 4] 4) [16; 20)

- 7. Сократите дробь $\frac{2a^{-\frac{1}{3}}}{a^{\frac{3}{2}}-2a^{-\frac{1}{2}}}$.

 - 1) $2(a-3)^{-1}$ 2) $2(\sqrt[3]{a}-3)^{-1}$
- 3) $\frac{a}{a^{\frac{1}{3}}}$
- 4) $-\frac{2}{3}$

- 8. Найдите значение выражения $4 \cdot (80 + 7^0)^{\frac{3}{4}} 32^{\frac{3}{5}}$.
 - 1) 100

4) 28

Самостоятельная работа

Вариант №2

1. Вычислите
$$(125)^{\frac{1}{3}} - (64)^{\frac{2}{3}}$$
.

$$1) -11$$

$$2) -3$$

$$4) -5$$

2. Вычислите
$$\frac{7^{-7} \cdot 7^{-8}}{7^{-18}}$$
.

1)
$$7^{-33}$$

3. Упростите выражение
$$(32x^{-10})^{-\frac{3}{5}}$$
.

1)
$$8x^6$$

2)
$$\frac{1}{8}x^{-\frac{13}{5}}$$
 3) $\frac{x^{\frac{7}{5}}}{8}$

3)
$$\frac{x^{\frac{7}{5}}}{8}$$

4)
$$\frac{x^6}{8}$$

4. Выполните действия:
$$\left(5a^{\frac{3}{11}}\right)^4 + 4a^{\frac{12}{11}}$$
.

1)
$$629a^{\frac{12}{11}}$$

2)
$$9a^{\frac{12}{11}}$$
 3) $9a^{\frac{24}{11}}$

3)
$$9a^{\frac{24}{11}}$$

5. Найдите значение выражения
$$\frac{x^{\frac{1}{2}}-y^{\frac{1}{2}}}{x-y}$$
 при $x=4, y=9$. Ответ запишите в виде десятичной дроби.

1)
$$\frac{1}{5}$$

6. Сократите дробь
$$\frac{a^{\frac{5}{3}} - a^{-\frac{1}{3}}}{a^{\frac{2}{3}} - a^{-\frac{1}{3}}}$$
.

1)
$$a - 1$$

1)
$$a-1$$
 2) $a^{\frac{2}{3}} + a^{\frac{1}{3}} + 1$ 3) $a+1$

3)
$$a + 1$$

4)
$$\frac{a^{-\frac{1}{3}}}{a-1}$$

7. Укажите промежуток, которому принадлежит значение выражения
$$\frac{b^{\frac{3}{2}}}{(3\cdot 2)^{-3}\cdot \left(b^{\frac{1}{2}}\right)^3}-2,34.$$

8. Найдите наибольшее из чисел
$$0.5^2$$
; 0.5^3 ; $(-0.5)^{-5}$; $(-0.5)^{-6}$.

$$1) 0.5^{2}$$

$$2) 0.5^3$$

4)
$$(-0,5)^{-6}$$

Эталоны ответов к заданиям для самостоятельной работы и критерии оценивания

Ответы:

Bap.	1	2	3	4	5	6	7	8
Ι	2	1	3	1	4	2	2	3
II	1	2	4	2	2	3	3	2

Критерии оценки:

40-38 баллов – оценка «5»

37-32 балла – оценка «**4**»

31-16 баллов – оценка «3»

15-1 балла-оценка «2» или «1»

Рефлексия

Закончи предложения

- 1) Сегодня я узнал....
- 2) Было интересно...
- 3) Было трудно...
- 4) Теперь я могу...
- 5) Я попробую...

Домашнее задание:

выучить теоретический материал; выполнить задания стр. 222, №432 по №436 на выбор.

критерии оценок за письменные упражнения домашней работы:

«5» баллов – верно решены №435 и любые 2 упр.;

«4» балла – верно решены заданя из 2-х упр.;

«3» балла – верно решены задания из 1-го упр.

Всем спасибо за внимание! До

Бисултанова Х.Р.